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Abstract
An important issue within the field of flexible multi-

body dynamics is the reduction of the flexible body’s
degrees of freedom. By using frequency weighted
Gramian matrix based reduction techniques, the distri-
bution of the loads is taken into account a priori. Fur-
thermore, an energy interpretation of the reduction pro-
cedure and error bounds in the frequency domain are
available. This allows a fully automated reduction pro-
cess. For numerical reasons, the dominant eigen vec-
tors of the Gramian matrix have to be approximated.
Within this paper, two different methods are shown. A
numerical example demonstrates the approximation ca-
pability in the frequency and time domain.

1 Introduction
Flexible multibody dynamics is used to examine the

dynamic behavior of gear-boxes, robot-arms, machine-
tools, crank-shafts, windmills, impact drills, etc. The
concept of flexible multibody systems is described
in (Schwertassek and Wallrapp, 1999) and (Shabana,
1998). In this work, the motion of a single elastic body
is described within the floating frame of reference for-
mulation. Within this framework, the motion of a flex-
ible body r is separated into an usually nonlinear mo-
tion of the reference frame Ki and into a linear elastic
deformation with respect to the reference frame u, see
Fig. 1. A widely used possibility for modelling the lin-
ear elastic deformation is the Ritz approach where the
elastic deformations are approximated with u = Φ · q,
where q is referred to the nodal displacements of a fi-
nite element model. Using Jourdain’s principles of dy-
namics, the equation of motion for a single body can
be derived, as shown e.g. in (Schwertassek and Wall-
rapp, 1999). This approach leads to a high number of
degrees of freedom. As a consequence, many analysis
and design problems cannot be solved within a reason-
able computing time. That is why the flexible coordi-
nates q are then approximated by projection on a sub-
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Figure 1. Floating frame of reference formulation

space span(V ) by q = V ·q, with dim(q̄) ¿ dim(q),
and requiring the residual to be orthogonal on this sub-
space. This procedure leads to the reduced equations
of motion

[
M r MT

er · V
V T ·M er V T ·M e · V

]
·
[
a
q̈

]
=

[
hr

V T · he

]
+

[
0

−V T ·Ke · V · q − V T ·De · V · q̇
]
, (1)

where the sub matrix M r corresponds to the mass ma-
trix known from rigid multibody dynamics, M e, De

and Ke are the flexible mass, damping and stiffness
matrices, whereas M er provides the coupling between
the rigid body movement and the elastic deformation.
The vector a contains the global accelerations of the
floating frame of reference, vectors hr and he col-
lect generalized inertia forces, gravitational forces and
forces acting on the body’s surface. In state of the
art reduction methods, like modal reduction the pro-
jection space span(V ) consists of the dominant eigen
vectors of the system. Because the spatial distribution
of loads is not considered, the convergence of modal re-
duction can be slow. Modal reduction can be improved



by extending the projection space (V ) with constraint
modes similar to sub-structuring techniques in struc-
tural dynamics, see e.g. (Craig, 1968). However, the
selection of the dominant eigen modes in combination
with the best constraint modes is a slow iterative pro-
cess which requires experience by the user. By consid-
ering all the reaction and applied forces acting on the
elastic body as inputs and outputs to the elastic body,
the body can be considered as a linear time-invariant
second order MIMO-system. Then another approach
for model reduction is the approximation of the map-
ping between specified inputs and output variables of
the MIMO-System. One possible reduction technique,
widely used in model order reduction of MEMS, is the
projection with Krylov-subspaces. By using a Krylov-
subspace as projection space span(V ), certain mo-
ments of the original and reduced transfer matrix of the
flexible body match. Overview articles about Krylov-
subspace reduction are given e.g. by (Bai, 2002) or
(Beattie and Gugercin, 2005). The fact that Krylov-
subspace reduction methods are iterative methods and
can be applied to large scale models represents their
decisive advantage whereas they become inflexible in
a system with many inputs if a small model is re-
quired which has to be considered as their disadvan-
tage. Another possible reduction technique is the incor-
poration of Gramian matrices in the reduction process
as proposed e.g. by (Sorensen and Antoulas, 2005) or
(Stykel, 2004). By using Gramian matrices, we obtain
a reduced order model which has very good approxi-
mation capabilities in the frequency domain as well as
in the time domain. Additionally, methods based on
Gramian matrices have a global error bound and more-
over, automation of the reduction process is possible.

2 Model Reduction based on Gramian Matrices
In order to establish the proposed model reduction

scheme, the linear time-invariant second order system

M e · q̈(t) + De · q̇(t) + Ke · q(t) = Be · u(t),
y(t) = CT

e · q(t) (2)

is considered, with the input matrix Be ∈ Rn×p and
the output matrix CT

e ∈ Rr×n. Using the Laplace
transformation, the (r × p)-transfer matrix of the sys-
tem

H(s) = CT
e · (s2M e + sDe + Ke)−1 ·Be (3)

is obtained. The H2-norm of the system can be written
as

‖H‖2H2
= trace(Ce · P p ·CT

e ) (4)

with the so-called position controllability Gramian ma-
trix, see (Meyer and Srinivasan, 1996; Sorensen and

Antoulas, 2005),

P p =
1
2π

∫ ∞

−∞
(Q(iω) ·QH(iω)dω, (5)

with

Q(iω) = (−ω2M e + iωDe + Ke)−1 ·Be. (6)

Frequently, in mechanical systems a certain range of
frequency is of special interest. By applying ideal
band pass filters to the input and the output, a cer-
tain frequency range [ωmin, ωmax] can be emphasized
(Antoulas, 2005). The H2-norm of the frequency
weighted system can then be written as

‖H‖w
H2

= trace(Ce · P ω
p ·CT

e )
1
2 (7)

where P ω
p is now the so-called frequency-weighted po-

sition controllability Gramian matrix

P ω
p =

1
2π

∫ −ωmin

−ωmax

(Q(iω) ·QH(iω)dω

+
1
2π

∫ ωmax

ωmin

(Q(iω) ·QH(iω)dω.

(8)

Hence, in order to obtain a good approximation of
the input-output mapping in a certain frequency range
with respect to the H2-norm of H(s), the frequency-
weighted Gramian matrix P ω

p should be incorporated
in the reduction procedure. For this purpose, the eigen
decomposition of

P ω
p =

[
V 1 V 2

] ·
[
diag(σi) 0

0 diag(σj)

]
·
[
V T

1

V T
2

]
(9)

is considered. The projection matrix V then consists
of the dominant eigen vectors V 1, which are associ-
ated with the largest eigenvalues σi of the frequency-
weighted position Gramian matrix. The reduced or-
der model is then given by Eq. (1). If only the lin-
ear system (2) is accounted for, an a priori error bound
in the frequency-weighted H2-norm can be developed,
see (Sorensen and Antoulas, 2005). The error of the
reduced system He = H − H̄ is then bounded in the
Hω

2 -norm by the sum of neglected eigenvalues of the
position Gramian matrix, i.e.

‖He‖ω
H2
≤ κ(

∑

j

σj)
1
2 . (10)

2.1 Numerical calculation of the 2nd order
Gramian matrix

For small asymptotically stable systems, the Gramian
matrix P p can be calculated by evaluating a matrix



logarithm in addition to the solution of a suitable
Lyapunov equation, see (Antoulas, 2005). Direct
solution of the Lyapunov equation is only possible for
small- to medium-scale models because the solution
requires O(n3) operations and the storage requirement
is O(n2). For large-scale models, the subspace of
dominant eigen vectors of the Gramian matrix has
to be generated. Here, we present two approaches,
especially suited for the frequency weighted reduction
scheme. One approach uses the two-step approach
explained in (Lehner and Eberhard, 2007). According
to this approach, a medium-scale model is acquired
in a first step with the help of Krylov-subspace
methods. Subsequently, the Gramian matrix of the
medium-scaled model is calculated and then used as an
approximation for the large scale Gramian matrix. In
the first step applying the Krylov-subspace reduction,
it is necessary to choose where the moments of the
reduced transfer matrix H̄ match with the moments
of the original transfer matrix H . Up to now, the
moment matching properties are chosen by hand.
However (Gugercin et al., 2007) proposed recently
a method by which the H2-norm of the error He is
minimized because the moment matching properties
are chosen in an optimal way. The application of this
method is under current research.
A second approach for approximating the frequency-
weighted Gramian matrix P ω

p was introduced
in (Lehner, 2007). According to this method the matrix
integral P ω

p is numerically approximated. By rewriting
and resorting the matrix integral (8)

P ω
p =

1
π

∫ ωmax

ωmin

Q̃(iω) · Q̃T
(iω)dω (11)

with the real-valued matrix

Q̃(iω) =
[
Re (Q(iω)) Im (Q(iω))

]
(12)

and using e.g. the mid-point rule as an approximation
rule for the matrix integral, we obtain the approximated
Gramian P̃

ω

p

P ω
p ≈ P̃

ω

p =
ho

π(s− 1)

s∑

l=1

Q̃(iωs) · Q̃T
(iωl), (13)

with the interval length h0 = ωmax − ωmin and the
number of sampling points s. The explicit calculation
of the eigenvalues of the approximated Gramian ma-
trix P̃

ω

p is not necessary, because it is possible to re-
late the calculation of the dominant eigen vectors of
the Gramian matrix to Proper Orthogonal Decompo-
sition (POD) methods. POD based model reduction
techniques are for example explained in (Willcox and
Peraire, 2002) or in (Volkwein, 2006). By building the
data sample matrix

U =
[
Q̃1 Q̃2 . . . Q̃s

]
, (14)

we can rewrite Eq. (13) with

P̃
ω

p =
h0

π(s− 1)
U ·UT
︸ ︷︷ ︸
POD Kernel

(15)

where U · UT is the POD Kernel. The POD Kernel
is used to solve the POD optimization problem of find-
ing a matrix V pod ∈ Rn×k which is the best approx-
imation of reduced order k of the data samples matrix
U ∈ Rn×s. This optimization problem is solved by
first solving the eigen problem

1
s
U ·UT · vpod

i = σiv
pod
i (16)

and then collecting those proper orthogonal modes
vpod

i corresponding to big proper orthogonal values σi

in V pod. Thus, a connection between the calculation
of the eigen modes of the approximated Gramian ma-
trix P̃

ω

p in Eq. (13) and the solution of a POD method
in Eq. (16) can be seen. The eigen modes of P̃

ω

p can
then be calculated by using POD methods where U is
builded with Eq. (14). If the number of snapshots s
is much smaller than the number of degrees of free-
dom n, the dominant eigen modes of the POD Ker-
nel can be calculated with the method of snapshots
(Sirovich, 1987) which reduces the calculation burden
from solving an eigenvalue problem of size n × n to
solving an eigenvalue problem of size s× s.

2.2 Towards an automated reduction process
The sum of neglected eigenvalues

∑
j σj can be used

to determine the size m of the reduced order model be-
cause the error is bounded below the sum of the ne-
glected eigenvalues, see Eq. (10). Usually, the eigen-
values of the Gramian matrix σi decay rapidly in me-
chanical systems. This means that the first neglected
eigenvalue is the dominant share in the sum of ne-
glected eigenvalues. The ratio of the first neglected
eigenvalue and the first eigenvalue σm+1/σ1 can then
be used as an indicator of an appropriate size of the
reduced order model as proposed in (Antoulas, 2005).
Characteristic of model reduction is the choice that the
ratio σm+1/σ1 should be smaller than the square root
of the machine precision

√
εmach ≈ 1.5 · 10−8. For

the automated reduction process, we determine the re-
duced order size of the system by checking the ratio
σm+1/σ1 <

√
εmach. The work-flow of the automated

reduction process can be seen in Fig. 2.

3 Example and Results
The potential of the above explained methods are now

shown by reducing a FEM model of a rack as shown in
Figure 3 and explained in (Lehner and Eberhard, 2007).
We assume, that forces are acting on the lower and the
upper plate in all six directions. The lower and the up-
per plate are assumed to be rigid and are labeled as



calculation of P
ω
p

Krylov-subspace reduction

POD reduction

or

VKry, Vpod

eigendecomposition of P
ω
p

find σm+1/σ1 ≤ (machine precision)1/2

build, V = VKry/pod · VGram, projection matrix
VGram = V1...m

project H to H̄

Figure 2. Workflow of the automated reduction process
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Figure 3. Model of the rack. In green boundary conditions for the
dynamic simulation

node 1 and node 2. Accordingly, the rack is consid-
ered as a MIMO System with 12 inputs and the in-
puts coincide with the outputs, B = C. The inter-
esting frequency range is from 10 to 500 Hz. The auto-
mated reduction process is applied to a Krylov-reduced
medium-scaled system of order 63 and a POD based
model reduction where the number of snapshots s is
equal to 30 is then applied to the elastic body. This
makes it possible to calculate the two error indicators
introduced in Section 2.2 by calculating the eigenval-
ues of the Gramian matrix P ω

p . In Fig. 4 the two error
indicators are plotted over the dimension m of the re-
duced order model and it can be seen that they indicate
about the same cut-of dimension. The automated re-
duction process generates reduced order models of size
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Figure 4. Error indicator used for the reduction process

m = 21 if the two-step approach is used whereas it
generates a reduced order model of size m = 23 by
using POD based model order reduction techniques. In
Fig. 5, the relative error

ε(ω) =
‖H(ω)− H̄(ω)‖F

‖H(ω)‖F
(17)

in the Frobenius norm is plotted. A reduced system of
order 63 generated by a Krylov based approach is the
most accurate model. Furthermore, the system of or-
der 21 respectively order 23, obtained by a Krylov +
Gramian matrix based approach or a POD based ap-
proach, are much more accurate then the model of size
23 obtained by traditional modal reduction. Because
of the high error of the modal model we cannot expect
useful simulation results there.
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Figure 5. Relative reduction error using different approaches

3.1 Emphasizing certain frequency ranges
One of the advantages of model reduction with

frequency-weighted Gramian matrix P ω
p is the pos-

sibility to emphasize certain frequency ranges. By
changing the frequency range [ωmin, ωmax] for which
P ω

p is calculated with the two-step approach, we ob-
tain reduced order models of different size, depending
on the frequency range of interest, which have good ap-
proximation behavior in the preferred frequency range,



see Fig. 6. For a smaller frequency range we only need
reduced order models of smaller size. However, the re-
duced order models of smaller size only have a good
approximation behavior in the emphasized frequency
range.

100 200 300 400 500
10

−15

10
−10

10
−5

10
0

f [Hz]

ε 
[−

]

 

 

n=21 ω [1 500]
n=21 ω [100 400]
n=16 ω [200 300]
n=14 ω [240 260]

Figure 6. Relative reduction error using different frequency inter-
vals

3.2 Comparisons in the time domain
The time domain is of great importance in flexible

multibody dynamics. For this purpose, also a dynamic
simulation is considered and the different approaches
are compared with respect to accuracy and computa-
tion time. The body is clamped to the surrounding at
node 2 and the body is actuated at node 1 with a time-
dependent force

F =




0
0

−10000 sin(2 · 10πt)


N.

As a reference frame for the dynamic simulation a
Buckens-frame is chosen, such that the origin of the
reference frame coincides with the center of gravity,
compare Fig. 3 green. The reduced order models are
simulated with the multibody dynamics simulation tool
SIMPACK for one second. The resulting system of
ODEs is solved numerically with the standard solver
of SIMPACK. In Fig. 7 the magnitude |u| of the trans-
lation deflection of the actuated lower plate is shown
for models of different size obtained with different re-
duction methods. In addition we compare those re-
sults with the translation of the nonlinear finite ele-
ment model. The accuracy of the reduced order model
is good. It pretty much shows the same response as
the nonlinear FEM model with 5982 degrees of free-
doms. The reduced order model of size 21 obtained
with the two step frequency-weighted Gramian matrix
approach has the same accuracy as a model of size 29
obtained by a POD based model reduction. The accu-
racy of those two models based on frequency-weighted
Gramian matrix reduction techniques is comparable to
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Figure 7. Results of the dynamic simulation

the accuracy of the model of size 63 obtained with a
Krylov-subspace based approach. However with the
model of size 21 we gain a speedup of the calculation
time as shown in Table 1. As could be already ex-
pected from the error in the frequency response shown
in Fig. 5, the results from the modal model of order 24
are worse than the other results and that is why they are
not depicted here.

Table 1. Normalized computation times for several reduced order
models

model computation time

Krylov+gram (21/63) 1.0

POD (23/30) 1.57

Krylov (63) 8.05

FEM 161.3

4 Conclusion
By using automated reduction techniques based on

frequency weighted Gramian matrices, the spatial dis-
tribution of loads is considered during the reduction
process and the stability properties of the original sys-
tem are preserved. With these methods we obtained
excellent reduction results in the frequency domain as
well as in the time domain. Furthermore, the neces-
sary order of the reduced model is chosen automatically
which simplifies the reduction process for the user.
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