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Abstract
Determining the parameters of constitutive models is

typically a material-specific process that requires recal-
ibration when the material changes. This procedure be-
comes notably time-consuming with an increased num-
ber of parameters and integral terms in the constitutive
equations. Recently, a novel approach utilizing neural
networks has emerged as an alternative. By training neu-
ral networks to replace constitutive equations, constitu-
tive substitution method maps the extensive parameter
space to computational results equivalent to those de-
rived from original equations. Comparing these results
with experimental data allows for efficient determination
of optimal parameter vectors. The powerful fitting ca-
pabilities and rapid computational speed of neural net-
works significantly expedite the parameter determination
process. Consequently, the task of solving for parame-
ters transitions from a complex optimization problem to
a straightforward computational search. In this work, we
introduce an iterative parameter generation (IPG) algo-
rithm to enhance this substitution method, thereby im-
proving its ability to fit a diverse range of materials.
Additionally, we explore the benefits of constructing a
general parameter space applicable to various material
classes.
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1 Introduction
Neural networks have received increasing attention in

the field of mechanics in recent years, and a large num-
ber of studies have focused on their applications in the
field (Le Viet et al., 2024; Gromov et al., 2024; Istomin
and Pavlov, 2024; Andreevic, 2023). Constitutive mod-
eling is crucial for analyzing mechanical properties, as it
offers mathematical frameworks that predict material re-
sponses under different loads and environmental condi-
tions (Savaedi et al., 2022; Ng et al., 2020). These mod-
els define the relationships between stress, strain, tem-
perature, and other relevant variables (Zhao et al., 2024;
Tricarico et al., 2023; Masri, 2023; Haikova et al., 2020;
Alkhatib and Sercombe, 2022). This capability enables
engineers and scientists to predict material behavior, op-
timize designs, conduct failure analyzes, and make in-
formed decisions on material selection. In recent years,
the use of neural networks to explore the constitutive
relations of materials has attracted significant attention.
This interest is largely driven by the universal approxi-
mation theorem, which posits that neural networks can
theoretically approximate any function (Liu et al., 2021;
Dornheim et al., 2024; Holthusen et al., 2024). How-
ever, this powerful fit ability comes with a significant
drawback: overfitting remains a fundamental issue in
machine learning and deep learning, garnering substan-
tial focus within the field of artificial intelligence (Kou
et al., 2023; Xu and Gu, 2023; Kornowski et al., 2024).
Furthermore, another critical limitation is the lack of a
rigorous framework of physical laws within the neural
network paradigm. This absence often leads to inconsis-
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tencies from a physical point of view (Masi et al., 2021;
Xu et al., 2021; Chen and Guilleminot, 2022; Su et al.,
2024; Idrissi et al., 2024). These issues pose substantial
risks for practical engineering applications, where such
inconsistencies can have severe consequences.

To address the challenges associated with using neu-
ral networks in constitutive modeling, extensive research
has focused on integrating physical principles into these
networks (Chiu et al., 2022; Yuan et al., 2022; Barar-
nia and Esmaeilpour, 2022; Meng et al., 2023; Zhang
et al., 2022). A prominent approach involves embed-
ding thermodynamic principles. For instance, (Masi
et al., 2021) developed a Thermodynamics-based Arti-
ficial Neural Network (TANN) by incorporating thermo-
dynamic knowledge into a neural network. This method
proved effective for modeling various elastic-plastic ma-
terials, including those exhibiting hyper-plasticity and
hypo-plasticity. Building on this approach, (Su et al.,
2024) introduced the Thermodynamics-Informed Neural
Network (TINN), which replaces the traditional neural
network with a recurrent neural network (RNN). This
substitution allows TINN to account for temporal rela-
tionships inherent in the constitutive models, thus pro-
viding more generalized and stable modeling capabili-
ties. (Idrissi et al., 2024) concentrated on inelastic com-
posites, which typically demand significant computa-
tional resources. They leveraged the relatively efficient
computation of ANN by embedding multi-scale thermo-
dynamic information, thereby enhancing the modeling
of composite structures. Furthermore, advancements at
the mathematical level have also contributed to the im-
proved modeling of material properties. (Xu et al., 2021)
incorporated the Cholesky factor into the neural network
to develop a symmetric positive definite neural network
(SPD-NN). This innovation introduces weak convexity
to the strain energy function, thereby stabilizing numer-
ical computations. Similarly, (Chen and Guilleminot,
2022) proposed a corrective method that enhances both
the stability and consistency of neural networks by inte-
grally representing forced convexity. These efforts un-
derscore the potential of embedding physical and mathe-
matical principles into neural networks to improve their
performance in constitutive modeling, leading to more
accurate and reliable predictions.

However, despite these advancements, neural networks
remain inherently non-interpretable (Dwivedi et al.,
2023; Saeed and Omlin, 2023; Arrieta et al., 2020; Minh
et al., 2022; de Bruijn et al., 2022). Their ”black-box”
nature allows them to produce highly accurate fitting
results but does not enable researchers to further ana-
lyze or compute the mechanical properties of materials,
as traditional constitutive equations do. Consequently,
leveraging neural networks to determine parameters for
established constitutive models represents a promising
research direction with significant potential for practi-
cal applications (Wang et al., 2021, 2023; Veasna et al.,
2023; Pogorelko et al., 2024). The present work builds
upon the methodologies established by (Wang et al.,

2021) and (Wang et al., 2023), which utilize neural net-
works to replace constitutive models—referred to as sub-
stitution methods. These methods transform the prob-
lem of parameter determination from a complex opti-
mization task into a straightforward computer lookup
operation within a large parameter space. (Pogorelko
et al., 2024) constructed both forward and inverse prob-
lems using neural networks, allowing for direct output
of parameters from the inverse problem network. In
contrast, (Veasna et al., 2023) employs a Pareto-based
multi-objective machine learning technique to identify
the parameters. This study continues along the lines set
by (Wang et al., 2021) and (Wang et al., 2023), lever-
aging their innovative approaches to solving parameter
determination. This paradigm shift represents a signif-
icant advancement over traditional optimization algo-
rithms. For instance, consider the constitutive model
Gpva for PVA (Polyvinyl alcohol) material in work of
(Wang et al., 2021):

σ(θ⃗, t) =
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)
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1−αB , λ(t) is the

stretch ratio and θ⃗ = (µρ, αB , tB , µγ̄) is the parameter
vector with n = 4 parameters of the constitutive model
that needs to be determined.

When 106 parameter vectors θ⃗ are randomly generated
and used to compute the stress response histories σ(θ⃗, t)
through the constitutive model (Equ.(1)), we can directly
identify the vector that best matches the experimental
data. This allows us to output the corresponding param-
eter values immediately. Essentially, this method trans-
forms the parameter determination from an optimization
problem into a straightforward lookup problem for the
computer. However, the primary challenge with this ap-
proach lies in the computational demands of the con-
stitutive model. Performing 106 computations with the
constitutive model can be prohibitively time-consuming.
For instance, as reported by (Wang et al., 2023), these
computations took a total of 4.6 hours. The core inno-
vation of the substitution method involves using neural
networks in place of the constitutive model, facilitating
efficient computation on large datasets. In comparison,
the same 106 computations with a neural network model,
as documented by (Wang et al., 2023), required merely
0.34 seconds, with the model training taking 72 seconds.
This progression from traditional constitutive models to
neural networks represents a significant advancement,
offering substantial improvements in computational ef-
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ficiency.
Theoretically, the 106 parameter vectors mentioned

correspond to 106 different materials. This suggests that
the substitution method could identify parameters for a
class of materials that conform to the same constitutive
equations, not just a single material. We believe this is
where the substitution method holds significant poten-
tial for development. However, there are still several
problems remained. Beyond the unexplored potential,
the substitution method faces a crucial challenge: can
neural networks accurately replace the original constitu-
tive model? Specifically, can the neural network’s output
maintain consistency or approximate the stress response
history using the same parameter vectors as those in the
constitutive equations? The key to addressing this issue
lies in setting appropriate ranges for the parameters. A
smaller range results in more accurate neural network
substitutions. In the work (Wang et al., 2023), parame-
ter ranges were explicitly set based on experience, and
the values themselves were relatively small for PVA ma-
terial constitutive equations. However, when applied to
new materials or materials with larger parameter values,
the neural network often fails to accurately substitute
the constitutive model, leading to the method’s failure.
To address the challenge of determining appropriate pa-
rameter value ranges and to further explore the potential
of substitution methods, we have outlined a technical
approach for the constitutive substitution method. Our
work offers the following key contributions:

1. Iterative Parameter Generation (IPG) Algorithms:
We developed algorithms that iteratively generate
parameters, thereby expanding the range of possi-
ble values. This enhancement increases the applica-
bility of the constitutive substitution method across
various scenarios.

2. Simultaneous Parameter Identification for Multiple
Materials: We leveraged the method’s capability to
concurrently determine parameters for two different
metallic materials using the same constitutive equa-
tion. This dual identification process highlights the
method’s efficiency and broadens its practical util-
ity.

The Section 2 provides a detailed description of the
problem and introduces the associated symbols used in
our expressions. In the Section 3, we discuss the con-
stitutive substitution method, including the iterative gen-
eration of parametric algorithms and the technical ap-
proach employed. The experimental results and discus-
sion are presented in Section 4. Finally, Section 5 con-
cludes the paper, summarizing the key findings and im-
plications of our work.

2 Statement of problems
For the constitutive models, in the constitutive substi-

tution method, the parameter space Θ is mapped to the
stress response space Ω: Θ → Ω by a neural network f ,

where Θ =
{
θ⃗1, θ⃗2, · · · , θ⃗p

}
, Θ ⊂ Rn, n is the number

of parameters, and

Ω =
{
σ1(θ⃗1, t⃗), σ2(θ⃗2, t⃗), · · · , σp(θ⃗p, t⃗)

}
,Ω ⊂ Rm,

σi(θ⃗i, t⃗) =
{
σi(θ⃗i, t1), σi(θ⃗, t2), · · ·σi(θ⃗i, tm)

}
,

t⃗ = (t1, · · · , tm) .

The data used to train the neural network model is ob-
tained through the constitutive model Gpva, i.e.

σi(θ⃗i, t⃗) = Gpva(θ⃗i, λ⃗(t), t⃗),

λ⃗(t) =
{
λ⃗(t1), · · · , λ⃗(tm)

}
,

Firstly, 1000 parameter vectors are randomly generated,
i.e. p =1000, and correspondingly 3000 training data
will be computed accordingly. Use this data to train the
neural network model f :

f(θ⃗i) = σi(θ⃗i, t⃗)

The main goal of the substitution method is to achieve
f(Θ) ≈ Gpva(Θ, λ⃗(t), t⃗).

Based on our previous discussion of this substitution
method, it is evident that the neural network’s ability to
accurately substitute constitutive equations hinges on its
capacity to produce outputs consistent with those mod-
els given identical inputs. Our research indicates that
a critical factor in achieving this accuracy is the range
of parameters used to generate random values, predeter-
mined by us. Narrowing this parameter range enhances
the quality of the neural network’s approximation of the
constitutive equations. To illustrate the impact of pa-
rameter range settings on substitution quality, we present
an example using the original paper’s constitutive model
Equ.(1). The options for the value ranges of the param-
eters are shown in Table 1. In particular, option 1 is de-
rived from the empirical values set in the original paper,
on the basis of which we gradually narrowed down the
range of values of the parameters to constitute the other
options.

Table 1. Options for parameter value ranges

options µρ αB tB µγ̄

1 [0, 15] [1.3, 1.9] [0, 1.5] [0, 100]

2 [0, 10] [1.4, 1.8] [0.1, 1.0] [20, 80]

3 [2, 8] [1.4, 1.7] [0.1, 0.5] [40, 70]

4 [2, 6] [1.5, 1.7] [0.2, 0.4] [50, 70]

5 [3, 6] [1.6, 1.7] [0.2, 0.3] [60, 70]
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After configuring the options, we begin by randomly
generating 1000 sets of parameters and obtaining the
corresponding stress response data. This data is used to
train the neural network. Next, we regenerate the 1000
sets of parameters along with their stress response data
to assess the neural network’s accuracy in fitting the con-
stitutive equations. The error is calculated using the fol-
lowing formula:

eval =
1

|Ω|
∑ ∥σ⃗i − σ⃗c

i ∥
∥σ⃗c

i ∥
(2)

where σ⃗i is the output from the neural network and σ⃗c
i is

the output from the constitutive models.
Figure 1 illustrates how the neural network’s capacity

to substitute constitutive equations improves with differ-
ent parameter range options. A smaller error signifies
a higher quality of substitution. Clearly, as the range
of values becomes more restricted, the neural network’s
substitution ability progressively enhances.

Figure 1. Effect of parameter value ranges on validation error, and
parameter value range options in Table 1.

Through addressing these limitations, we aim to fur-
ther refine and validate the substitution method as a
robust tool for determining parameters of constitutive
models.

3 Methods and techniques
3.1 Thermal softening of metals and the constitu-

tive model
Thermal softening (Goviazin et al., 2023; Zhang et al.,

2021a; Hao et al., 2022; Shen et al., 2020) is the reduc-
tion in a metal’s strength and hardness as the temper-
ature increases. This phenomenon significantly affects
mechanical properties such as yield strength, tensile
strength, and ductility. As the temperature rises, atomic
vibrations become more intense, weakening the metallic
bonds and facilitating dislocation movement within the
crystal structure (Li et al., 2020; Gao et al., 2022; Safina
et al., 2022; Zhu et al., 2024; Li et al., 2024). Conse-
quently, the metal deforms more easily under stress. El-
evated temperatures also enhance dislocation mobility,

which can lead to recrystallization (Zhang et al., 2020;
Tiamiyu et al., 2022; Derazkola et al., 2022; Zhang et al.,
2021b; Li et al., 2021). During recrystallization, new
grains with fewer dislocations form, reducing strength
but increasing ductility. Moreover, high temperatures
can cause phase transformations in certain alloys, alter-
ing their crystalline structure and further impacting their
hardness and strength.

The strain-stress relationship of a material outlines
how it deforms under an applied load, and thermal soft-
ening significantly influences this interaction. As tem-
perature increases, the yield strength (Giles et al., 2022;
Liu et al., 2020; Hou et al., 2022; Deng et al., 2020) -the
stress at which a material begins to plastically deform-
decreases. This reduction means that the material yields
at lower stresses when exposed to high temperatures
compared to cold conditions. Similarly, the ultimate ten-
sile strength, which represents the maximum stress a ma-
terial can endure before breaking, diminishes as temper-
ature rises. Consequently, materials become less capa-
ble of withstanding high loads without failing at elevated
temperatures. Increased ductility, or the ability of a ma-
terial to undergo substantial plastic deformation before
rupture, is another effect of higher temperatures. Metals
exhibit greater elongation and reduction in area before
fracturing when tested at elevated temperatures. Addi-
tionally, the rate at which a metal strengthens due to
plastic deformation, known as the work hardening rate,
tends to decrease with rising temperature. This results in
a less steep slope in the strain-hardening portion of the
stress-strain curve. As a result, the typical stress-strain
curve shifts noticeably with temperature variations. At
low temperatures, materials display high yield strength,
high ultimate tensile strength, and low ductility. Con-
versely, at high temperatures, materials exhibit lower
yield strength, lower ultimate tensile strength, and in-
creased ductility.

Zerilli-Armstrong (ZA) models (Zerilli and Arm-
strong, 1987, 1996) are a version of dislocation-
mechanics-based (Dm) models. The motion of disloca-
tions plays a pivotal role in influencing plastic deforma-
tion. The presence of defects within a material that con-
tains dislocations can impede the motion of these dislo-
cations, leading to interactions between them. To over-
come this impediment, a flow stress σ, must be gener-
ated. This flow stress can be decomposed into two dis-
tinct components, as expressed in Equation 3. The gen-
eral form of the model can be written as:

σ = σath + σth (3)

where the thermal component, denoted as σth, can be
derived through various relationships within the frame-
work of dislocation kinetics. The form of the athermal
component, represented as σath, may be informed and
guided by empirical experimental results.
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The ZA model Gza encompasses body-centered cubic
(BCC), face-centered cubic (FCC), and hexagonal close-
packed (HCP) crystal structures. Building on previous
research, the constitutive model for BCC metals can be
expressed as follows:

σ(θ⃗) = σath +B × e−β0T+β1T lnε̇ +B0ε
n
p (4)

where the parameter vector θ⃗ = (σath, B, β0, β1, B0, n),
correspondingly, Θ ⊂ Rn, n = 6.

The first term σath accounts for the athermal compo-
nent. This component is independent of temperature
T and remains constant under various conditions. The
second term results from the thermal activation anal-
ysis of Peierls stress interactions. This term captures
the temperature-dependent behavior of the material, il-
lustrating how thermal energy affects the movement of
dislocations. It is important to note that ε̇ represents
the strain rate in this context. The third term represents
continuous work hardening, where the material’s resis-
tance to deformation increases without reaching a max-
imum flow stress at large strains. In scenarios involv-
ing isotropic hardening, this hardening parameter is typ-
ically associated with the equivalent plastic strain εp.

During plastic deformation, the process of temperature
rise occurs as heat is produced within the material. This
heat can either escape to the surrounding environment or
be retained internally, thereby increasing the material’s
temperature. When the rate at which heat is generated
exceeds the rate at which it is dissipated, the material’s
temperature begins to rise. In scenarios involving high
strain rates, an adiabatic process may occur. Here, the
rapid and intense nature of plastic deformation results in
most of the generated heat being trapped within the ma-
terial, leading to a significant increase in temperature. As
this happens, there is a concurrent decrease in the ma-
terial’s flow stress, impacting its deformation behavior.
The quantitative assessment of this temperature increase
is typically governed by a specific equation, referenced
as Eq. (5) for the one-dimensional case.

∆T =
η

ρCv

∫
σdεp (5)

where ρ is the mass density, η is the plastic work-heat
conversion factor, and Cv is heat capacity.

3.2 Structure of the artificial neural network
In the original study, an adaptive neural network

framework was utilized. This framework allowed for
the number of layers in the network to be dynamically
increased based on feedback from a validation set, en-
hancing the accuracy of the neural network as a substi-
tute for the constitutive model. However, our research
suggests that the range of parameters has a more sig-
nificant impact than the structure of the neural network
itself. We find that when the parameter range is con-
strained within a narrow band, a simpler neural network

with just two hidden layers can effectively replace the
constitutive model.

The fundamental structure of a classical neural net-
work comprises three main components: the input layer,
the hidden layers, and the output layer (Zou et al., 2009;
Yegnanarayana, 2009; Basheer and Hajmeer, 2000).
Each layer contains a pre-determined number of neu-
rons. In our study, the input layer consists of 6 neurons
(number of parameters). The hidden layers include two
layers, each with 32 neurons. The number of neurons
in the output layer corresponds to the number of stress
histories m, which varies according to the experimental
conditions. In the first hidden layer of our neural net-
work, each neuron executes a computation represented
by w1kθ⃗+b1k, where θ⃗ is the input vector from the input
layer, w1k denotes the weight vector, and b1k is the bias
term. Similarly, the neurons in the second hidden layer
follow the same operational form using their respective
weights w2k and biases b2k. Finally, the output layer
processes its inputs with the corresponding weights w3k

and biases b3k, producing the final output of the neural
network.

Figure 2. Bi-layer neural network structure. The neural network uti-
lized in this study has a bi-layer structure. The input layer comprises
six neurons, corresponding to the six parameters of the constitutive
model (represented by blue circles). The hidden consists of two lay-
ers, each containing 32 neurons (depicted as orange circles). Finally,
the output layer produces a specific stress history, illustrated by green
circles.

This operation’s result is then processed through an ac-
tivation function a, and passed to the next layer, where a
same computation occurs. The activation function a is:

a(z) = ln(1 + ez) (6)

Correspondingly, the first hidden layer follows this
structure and can be denoted as follows:

h1k(θ⃗) = ln(1 + ew1k θ⃗+b1k) (7)
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And the second hidden layer follows:

h2k(h1) = ln(1 + ew2kh1+b2k) (8)

Finally, at the output layer, the output is given by:

f(θ⃗) = w3i × h2 + b3i, i = 1, 2, · · · ,m (9)

By continually narrowing down the range of parameters
so as to eventually achieve f(Θ) ≈ Gza(Θ, ε̇, εp).

3.3 Iterative parameter generation algorithm
For metal materials, the parameter values can be quite

large, resulting in an expanded range of potential val-
ues. This makes the previously mentioned strategy of
randomly generating parameter vectors impractical for
neural networks to effectively substitute the constitutive
equations. To address this challenge and improve the ap-
plicability of the substitution method for materials with a
wide range of parameter values, we have developed an it-
erative parameter generation algorithm (Fig.3). The pro-
cess begins by randomly generating 3,000 initial param-
eter vectors, which are used to calculate corresponding
stress histories. These stress histories serve as training
data for a neural network model, enabling it to predict
stress responses based on these parameters.

Next, a much larger set of 3 million parameter vectors
is generated to create a comprehensive stress response
history matrix. This matrix, consisting of prediction
data, is then refined using experimental stress data. Ini-
tially, for example, experimental data at T = 500, ε̇ =
8500 is compared with the matrix. By filtering out en-
tries with errors less than 5, the algorithm forms a re-
fined matrix, effectively narrowing the parameter space.
The refinement continues with another set of experimen-
tal data at T = 700, ε̇ = 8500. Again, only predictions
with minimal errors are retained, further tightening the
parameter range. This filtered dataset is then used to de-
fine a new, narrower range of parameter vectors, which
leads back to the initial step of the algorithm. By itera-
tively applying this process, the algorithm systematically
reduces the range of parameter values, thereby improv-
ing the precision and reliability of the neural network’s
stress response predictions. This targeted refinement en-
sures that the parameter space becomes increasingly de-
fined, leading to more accurate and dependable predic-
tions.

4 Results and discussion
In this study, we evaluate the effectiveness of the con-

stitutive substitution method on metal materials, specif-
ically steel and iron. This approach differs from tradi-
tional parameter-solving techniques as it employs IPG
algorithm to simultaneously determine the parameters
for both types of metals.

4.1 HSLA-65 Steel
Compression tests were conducted over a broad spec-

trum of strain rates, ranging from 0.001/s to 8500/s, and

temperatures from 77 K to 1000 K. For quasi-static load-
ing rates of 0.001/s and 0.1/s, an Instron hydraulic test-
ing machine was utilized, with tests performed at tem-
peratures from 77 K to 800 K (Nemat-Nasser and Guo,
2005). Elevated temperatures were achieved with a high-
intensity quartz lamp within a radiant-heating furnace in
an argon environment. Conversely, the low temperature
of 77 K was attained by immersing both the specimen
and the testing fixture in liquid nitrogen. High strain
rate tests were executed using the enhanced compression
recovery Hopkinson technique, covering a temperature
range from 77 K to 1000 K. At temperatures above 700
K, an unusual increase in flow stress was observed due
to dynamic strain aging. This phenomenon is beyond the
scope of the current paper; hence, our modeling focuses
on the temperature range of 77 K to 700 K. For HSLA-65
Steel, in Eq. (5), ρ = 7.8g/cc, η = 1, Cv = 0.5J/gk.

After giving a range of values to the parameter vec-
tor, the iterative generative algorithm can be used to re-
duce this range, and the results of each iteration are dis-
played in the Table 2. The experiment results demon-
strate that with an increase in iterations, the parameter
values become more precise. This refinement enables
the constitutive substitution method to identify parame-
ters within a limited range effectively. Table 3 presents
the parameters determined by both the constitutive sub-
stitution method and the optimization algorithm, high-
lighting their average errors for steel materials. The the
visualisation of the simulation results is presented in Fig-
ure 4.

4.2 93W-4.9Ni-2.1Fe Tungsten-based composite
(Xu and Huang, 2013) investigated the mechanical be-

havior of a commercial tungsten-based composite (93W-
4.9Ni-2.1Fe) with a body-centered cubic (BCC) struc-
ture. They conducted tests across a broad spectrum of
strain rates, from 0.001/s to 3000/s, and temperatures
ranging from 288 K to 873 K. Dynamic compression
tests at high strain rates of 1000/s and 3000/s were per-
formed using a modified split Hopkinson pressure bar
technique. These tests utilized electro-thermal cells to
achieve elevated temperatures between 288 K and 873
K. For the quasi-static conditions, involving strain rates
of 0.001/s, an MTS servo-hydraulic testing machine was
employed. For 93W-4.9Ni-2.1Fe Tungsten-based com-
posite, in Eq. (5), ρ = 17.8g/cc, η = 0.9, Cv =
162.92− 0.00995T +1.74× 10−5T 2(×10−3J/gK, for
0◦C ≤ T ≤ 1000◦C (Xu and Huang, 2013).

After giving a range of values to the parameter vec-
tor, the iterative generative algorithm can be used to re-
duce this range, and the results of each iteration are dis-
played in the Table 4. The experiment results demon-
strate that with an increase in iterations, the parameter
values become more precise. This refinement enables
the constitutive substitution method to identify parame-
ters within a limited range effectively. Table 5 presents
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Figure 3. Flowchart of the iterative parameter generation (IPG) algorithm

the parameters determined by both the IPG method and
the optimization algorithm - least square (LS) method,
highlighting their average errors for steel materials. The
the visualisation of the simulation results is presented in
Figure 5.

5 Conclusion
In this paper, we introduce a groundbreaking neural

network-based approach for determining the parameters
of constitutive models, which we refer to as the con-
stitutive substitution method. This innovative method
is enhanced by integrating an iterative generation algo-

rithm, significantly increasing the efficiency and accu-
racy of exploring the parameter space for precise param-
eter determination. The iterative nature of our algorithm
allows for continuous refinement and optimization, re-
ducing computational resources while enhancing relia-
bility.

Moreover, we extend the applicability of this method
across various materials, enabling simultaneous param-
eter determination for different substances governed by
the same constitutive equations. This cross-material ca-
pability not only streamlines the modeling process but
also facilitates a broader understanding of material be-
haviors under similar theoretical frameworks. By im-
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Figure 4. Stress-strain diagrams of HSLA-65 steel at 4 temperatures and 2 high loading rates and corresponding simulation results. The dashed
line on the left shows the simulation results of the IPG -(a), (c), (e), while the solid line on the right shows the simulation results of the least square
-(b), (d), (f) (Zhao et al., 2024) .

proving both the efficiency of parameter exploration and
the versatility of application, our method offers a robust
and comprehensive tool for researchers and engineers in
the field of constitutive modeling.
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