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Abstract— The paper is devoted to the state estimation
problem for impulsive control systems described by linear
differential equations containing impulsive terms (or measures).
The state estimation algorithms that use the special structure of
linear impulsive control problem and are based on techniques
of external and internal ellipsoidal approximations of trajectory
tubes of uncertain impulsive systems are presented here. The
examples of construction of such ellipsoidal estimates of the
reachable sets and trajectory tubes of linear impulsive control
systems are given.

I. I NTRODUCTION

Number of researches is devoted to the different aspects
of the theory of optimization of dynamic systems with
generalized (impulse) control. The impulsive control problem
of the trajectory tube of the system described by linear
differential equations is considered in the paper. This system
contains impulsive terms (or measures) and uncertainty on
initial date [1]-[4].

There is a long list of publications devoted to impulsive
control optimization problems, among them we mention here
only the results related to the present investigation [5]-[13].
The question arises how the results of classical control theory
established for uncertain dynamical systems can be extended
to the case of uncertain impulsive systems. It is impotent that
in the considered problem the control influences are limited
not only by usual requirement of finiteness of variation but by
special restriction of ellipsoidal type. Particularly, the vectors
of jumps of generalized controls under this restriction must
lie in the given ellipsoid of an appropriate finite-dimension
space. Such problems arise when the possibilities of control
of impulsive dynamic system are constrained by non-even
restrictions for different directions. For example, one can
consider the movement of the flying devices near the earth
surface or in the narrow gorges. The specific features of an
impulse control system result in the necessity of constructing
ellipsoidal estimates for a convex hull of the union of a
family of ellipsoids (this problem does not arise in the case
of estimating states of dynamic systems with controls of
classical type).

The aim of the paper is to find the external and internal set-
valued estimates of the reachable sets of impulsive control
systems with special ellipsoidal constrains on the admissible
values of control functions and on the initial state vectors.
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Basing on the techniques of so-called ellipsoidal calculus
[1], [3], [4] a new state estimation approach that uses the
special structure of the studied impulsive control problem
is presented here. The examples of construction of such
ellipsoidal external and internal estimates of reachable sets
of linear impulsive control systems are given also.

II. PROBLEM FORMULATION

Consider a dynamic control system described by a differ-
ential equation with impulsive controlu(·):

dx = A(t)xdt + du, x(−0) = x0, t ∈ [0, T ], (1)

or in the integral form [5],

x(t)=x(t; u(·), x0)=X(t)x0 +

t∫

0

X(t)X−1(τ)du(τ). (2)

Here we assume thatA(t) is a continuousn×n - matrix func-
tion, X(t) is the fundamental matrix solutioṅX = A(t)X
(X(0) = I), u(·) ∈ V n

p where V n
p means the space ofn-

vector functionsu(·) such thatu(t) is continuous from the
right on [0, T ) with u(−0) = 0 and

Vp[u(·)] = sup
{ti}

k∑

i=1

‖u(ti)− u(ti−1)‖p < ∞

‖u‖p =

(
n∑

i=1

|ui|p
) 1

p

, (1 ≤ p < ∞),

whereu=(u1, . . . , un) and ti : 0 = t0< . . .<tk = T .
Let E0 be an ellipsoid inRn:

E0 = {l∈Rn| l′Q0l≤1},
whereQ0 is a given symmetric positive definiten×n matrix,
we introduce a special restrictionU on the control functions
u(·) in the spaceV n

p of functions of the bounded variations
on [0, T ] [12]. DenoteCn

q the space of continuousn-vector
functionsy(·) with the norm

‖y(·)‖∞,q = max
0≤t≤T

‖y(t)‖q.

It is well known that the spaceV n
p is dual to the spaceCn

q

(V n
p = Cn∗

q ) wherep = 1 if q = ∞, p = ∞ if q = 1 and
1 < p < ∞ if q = (1− p−1)−1.

Consider the so-called ”ellipsoid”E in Cn
q :

E = {y(·) ∈ Cn
q | y′(t)Q0y(t) ≤ 1 ∀t ∈ [0, T ]} =

= {y(·) ∈ Cn
q | y(t) ∈ E0 ∀t ∈ [0, T ]} (3)



and its conjugateE∗ ⊂ V m
p ,

U = E∗ = {u(·) ∈ V n
p |

T∫

0

y(t)du(t) ≤ 1,

∀y(·) ∈ Cn
q y(t) ∈ E0, ∀t∈[0, T ]}.

Definition 1: A control u∗ is admissible ifu(·) ∈ U .

In particular, under such restriction vectors of impulsive
jumps of controls∆u = u(ti+1)− u(ti) ∈ U have to belong
to the ellipsoid

E∗0 ={z ∈ Rn| z′Q−1
0 z ≤ 1}.

We will assume that the initial valuex0 for the system (1)
is unknown but bounded with a given boundx0 ∈ X0,

X0 = {x0 ∈ Rn| x′0R
−1x0 ≤ 1}, (4)

whereR is a symmetric positively definedn× n matrix.
Denote

X (t;X0) =
⋃

x0∈X0

⋃

u∈U
x(t;u(·), x0).

The setX (t;X0) is actually the reachable set of the impulsive
differential system (1) from the initial setX0 at the instant
t for all possible admissible controlsu(·).

So the main problem of the paper is to find the external
and internal estimates of ellipsoidal type for the reachable
setX (T ;X0) basing on the special structure of the dataX0

andU .

III. M AIN RESULTS: ELLIPSOIDAL ESTIMATES

In this section we apply the techniques of the ellipsoidal
calculus to find the external and internal estimates for the
reachable setX (T ;X0).

We takeX0 = {0} first and denoteX (T ) = X (T ; {0}) to
be a reachable set of (1) and

T∗={τ∗∈[0, T ]| ∃l∗ 6= 0, (G(τ∗, l∗))
1
2 = max

0≤τ≤T
(G(τ, l∗))

1
2 },
(5)

G(τ, l) = l′X(T, τ)Q0X
′(T, τ)l,

X(T, τ) = X(T )X−1(τ).

We will consider further, that the following condition is
executed

Assumption P:The setT∗ is finite:

T∗ = {τ∗1, τ∗2, . . . , τ∗m} ⊂ [0, T ].

Remark 1:The class of systems for which this assumption
holds is not empty, e.g. it is fulfilled in Example.

Remark 2:In the general case, the extremal set

T∗ = {τ∗ ∈ [0, T ]| (G(τ∗, l))
1
2 = max

0≤τ≤T
(G(τ, l))

1
2 }

should not be finite and may depend onl. Therefore the
assumption P is essential.

Theorem 1:[12] Under the assumption P we have

X (T ) = co
⋃

τ∈T∗

E(0, Qτ ), (6)

E(0, Qτ ) = {x ∈ Rn | x′Q−1
τ x ≤ 1},

Qτ = X(T, τ)Q0X
′(T, τ).

Proof: The proof of this theorem is based on the
structures of the reachable setX (T ) :

X (T ) =
⋃

u∈U

T∫

0

X(T, τ)du(τ)

and the special “ellipsoidal” restrictionU on controls.

A. External Ellipsoidal Estimates

In order to construct the external estimate, we consider
the auxiliary problem.

Problem 1:Two ellipsoids are given

E0 = {x ∈ Rn | x′Q−1
0 x ≤ 1},

E1 = {x ∈ Rn | x′Q−1
1 x ≤ 1}. (7)

Find an external ellipsoid

E+ = {x ∈ Rn | x′(Q+)−1x ≤ 1}
that containsE0 ∪ E1 (therefore, theE+ will contain the
convex hullco(E0 ∪ E1)). Equivalently, it is required to find
the symmetric positive definite matrixQ+ such that for all
l ∈ Rn we have

(l′Q0l)
1
2 ≤ (l′Q+l)

1
2 , (l′Q1l)

1
2 ≤ (l′Q+l)

1
2 , (8)

and it is desirable also to find the ellipsoidE+ that has the
minimal possible volume [4].

We need to do three consequent steps to solve the Prob-
lem 1.

Step 1.Let λ1, . . . , λn be the roots of the equation

|Q0λ−Q1| = 0 (9)

(note thatλi > 0 (i = 1 . . . n) are the eigenvalues of matrix
Q−1

0 Q1).

DenoteB = Q
− 1

2
0 Q1Q

− 1
2

0 . The matrixB is also symmet-
ric and positive definite, and it can easily be seen thatλi

are also the eigenvalues of matrixB [14]. There exists an
orthogonal matrixM such that [14],(MM ′ = M ′M = I)

M ′BM = diag{λ1, . . . , λn} = W 2. (10)

We transform the coordinates from the vectorx to the new
variable s that satisfies the equalityx = Q

1
2
0 Ms. Under

this transformation the ellipsoidsE0, E1 (13) become the
ellipsoids

Ẽ0 = {s ∈ Rn|s′s ≤ 1}, (11)

Ẽ1 = {s ∈ Rn|s′(W 2)−1s ≤ 1} (12)

whereW 2 determined in (10).



Step 2.We construct the ellipsoid̃E+ ⊇ Ẽ0 ∪ Ẽ1 where

Ẽ+ = {s ∈ Rn | s′(Q̃+)−1s≤1},
Q̃+ = diag{µ1, . . . , µn},

µi = max{1, λi}, i = 1, 2, . . . , n.

The following theorem holds.

Theorem 2:[12] The ellipsoidẼ+ constructed in this way
solves the problem 1 for the sets̃E0 and Ẽ1 and is minimal
with respect to inclusion among all ellipsoids containing
Ẽ0

⋃ Ẽ1 and having a matrix of diagonal form.

Theorem 3:[12] The ellipsoidẼ+ is minimal with respect
to the volume among all ellipsoids that contaiñE0 ∪ Ẽ1.

The proof of these theorems follows from the properties
of ellipsoids and the result ([4], corollary 5.1).

Step 3.We return to the space ofx - coordinates and
therefore we get the inclusion

E+ = {x ∈ Rn | x′(Q+)−1x ≤ 1} ⊇ (E0 ∪ E1),

Q+ = Q
1
2
0 M ′Q̃+MQ

1
2
0 .

It should be noted that, based on the solution of the auxil-
iary problem, we can also solve the problem of constructing
an external estimate forX (T ). For this purpose, we construct
at the first stage an ellipsoidE+

1 = E+ using Eτ0 and Eτ1

according to the scheme considered. Then, usingE+
1 andEτ2 ,

we constructE+
2 , and so on. The assumption P guarantees

the finite number of such steps. The final ellipsoid contains
X (T ).

B. Internal Ellipsoidal Estimates

In order to construct the internal estimate, we consider the
auxiliary problem.

Problem 2:Two ellipsoids are given

E0 = {x ∈ Rn | x′Q−1
0 x ≤ 1},

E1 = {x ∈ Rn | x′Q−1
1 x ≤ 1}. (13)

Find the internal ellipsoid

E− = {x ∈ Rn | x′(Q−)−1x ≤ 1}
that is contained inco(E0 ∪ E1). Equivalently, it is required
to find the symmetric positive definite matrixQ− such that
for all l ∈ Rn we have

(l′Q0l)
1
2 ≥ (l′Q−l)

1
2 , (l′Q1l)

1
2 ≥ (l′Q−l)

1
2 . (14)

We need to do some consequent steps to solve the Prob-
lem 2.

Step 1. This step is the same as step 1 for external
estimates. Therefore, to solve this auxiliary problem 2 we
should find at the first step non-singular transformation of
matrices Q0, Q1 of ellipsoids E0, E1 which leads them

simultaneously to diagonal forms. The transformed ellipsoids
have forms (11, 12):

Ẽ0 = {s ∈ Rn|s′s ≤ 1},

Ẽ1 = {s ∈ Rn|s′(W 2)−1s ≤ 1}.
Step 2.In order to find the internal ellipsoidal estimation

of co(E0 ∪ E1) we use the fact that the intersection and the
union for overlapping sets are dual operations [15].

Lemma 1: [15] SupposeM,M1,M2 are convex com-
pacts inRn. Then

1) If 0 ∈M, thenM∗ is convex compacts inRn.
2) If 0 ∈M, then(M∗)∗ = M.
3) If M1 ⊆M2 thenM∗

1 ⊇M∗
2.

4) If A∈Rn×n anddetA 6= 0 then(AM)∗=(A′)−1M∗.
5) If 0 ∈M1∩M2 then(M1∩M2)∗ = co(M∗

1∪M∗
2).

From Lemma 1 it follows that for transformed ellipsoids
Ẽ0 and Ẽ1 we have

Ẽ− ⊆ co(Ẽ0 ∪ Ẽ1) ⇔ (Ẽ−)∗ ⊇ Ẽ∗0 ∩ Ẽ∗1 .

Notice thatẼ∗0 = Ẽ0,

Ẽ∗1 = {s ∈ Rn|s′W 2s ≤ 1},

W 2 = diag{λ1, . . . , λn},
λi > 0 (i = 1 . . . n) are the eigenvalues of matrixQ−1

0 Q1,
defined in (9).

Step 3.Now we need to construct the upper ellipsoidal
bound forẼ∗0 ∩ Ẽ∗1 .

There are different approaches to the ellipsoidal estimation
of intersection of two ellipsoids, e.g. [1]-[4], [11], but un-
fortunately non of them provided the minimal volume upper
estimate.

The approach given below allows to estimate the reachable
set enough precisely and it can be easy calculated.

At first we construct the ellipsoid̃E∗2 that is contained in
the intersectioñE∗0 ∩ Ẽ∗1 :

Ẽ∗2 = {s ∈ Rn|s′Q̃−1
2 s ≤ 1}, Q̃2 = diag{η1, . . . , ηn},

ηi = min{1, 1/λi}, i = 1, 2, . . . , n.

Further we find the ellipsoid similar tõE∗2 with minimal pos-
sible volume among all ellipsoids containing the intersection
Ẽ∗0 ∩ Ẽ∗1 . It is not difficult to calculate similarity coefficient:

k =
η2(1− λ2) + η1(λ1 − 1)

η1η2(λ1 − λ2)
.

Therefore we get the ellipsoid

(Ẽ−)∗ = {s ∈ Rn|s′(Q̃−)−1s ≤ 1},
where

Q̃− = kQ̃2 = diag{kη1, . . . , kηn}, (15)

ηi is defined above.



Step 4.The conjugate ellipsoid to the(Ẽ−)∗ is the internal
estimate of the union of transformed ellipsoidsẼ0 and Ẽ1,

Ẽ− = {s ∈ Rn|s′Q̃−s ≤ 1},
whereQ̃− is in (15).

Theorem 4:The ellipsoid Ẽ− constructed in this way
solves the problem 2 for the sets̃E0 and Ẽ1.

Proof: The proof follows from the algorithm of
constructing the diagonal matrix(Q̃−)−1 of ellipsoid Ẽ−,
properties of ellipsoids and Lemma 1.

Step 5.Then one can return to the original coordinates.
The final calculation gives the ellipsoidE− (the internal
estimate)

E− = {x ∈ Rn | x′(Q−)−1x ≤ 1} ⊆ co(E0 ∪ E1),

Q− = Q
1
2
0 M ′(Q̃−)−1MQ

1
2
0 .

Assume now that the ellipsoid

X0 = {x0 ∈ Rn| x′0R
−1x0 ≤ 1}

is done instead of the above assumptionX0 = {0}. In this
case we have

X (T,X0) = E(0, X(T, 0)RX ′(T, 0)) + X (T ),

and we need only to apply the estimate procedure for sum
of the ellipsoid E(0, X(T, 0)RX ′(T, 0)) and the ellipsoid
which is contained inX (T ) [3], [4].

Based on the solution of the auxiliary problem 2, we
can also solve the problem of constructing an internal es-
timate for reachable setX (T ). For this purpose we apply
this procedure consequently. assumption The assumption P
guarantees the finite number of such steps. The final ellipsoid
is contained inX (T ).

C. General Case

It was assumed before that the assumption P is valid. Next
we omit the assumption P and consider the general case. The
following theorem is true.

Theorem 5:For anyε > 0 there existδ > 0 and a finite
setTδ ⊂ [0, T ] such that for alll ∈ Rn the inequalities hold

max
τ∈Tδ

(G(τ, l))
1
2≤max

0≤τ≤T
(G(τ, l))

1
2≤max

τ∈Tδ

(G(τ, l))
1
2 +ε‖l‖.

(16)
Proof: Introduce the notation

f(τ, l) = ρ(l|X (T,X0)) = (l′X(T, τ)Q0X
′(T, τ)l)

1
2 .

It is obvious that the functionf(τ, l) is continuous in
[0, T ]× S, whereS = {l ∈ Rn| ‖l‖2 ≤ 1}. Therefore, for
any ε > 0 we can findδ > 0 such that

|f(τ, l)− f(τ̃ , l)| ≤ ε (17)

for any l ∈ S and anyτ, τ̃ ∈ [0, T ] such that|τ − τ̃ | < δ.
Let set

Tδ = {0 = τ0 < τ1 < . . . < τk = T}, max
1≤i≤k

|τi−τi−1| < δ.

Then, we obtain from (17)

max
τ∈Tδ

f(τ, l) ≤ max
0≤τ≤T

f(τ, l) ≤ max
τ∈Tδ

f(τ, l) + ε.

Using that this and the fact that the functionf(τ, l) is
positively homogeneous, we obtain inequality (16).

Corollary 1: If the conditions of the theorem 5 are valid
then the inclusions are true

co(
⋃

τ∈Tδ

Eτ ) ⊂ co(
⋃

τ∈[0,T ]

Eτ ) ⊂ co(
⋃

τ∈Tδ

Eτ ) + εS.

Proof: The proof follows from the formula

ρ(l|co
⋃

τ∈Tδ

Eτ ) = max
τ∈Tδ

f(τ, l)

and estimate (16) of Theorem 5.
Applying the procedure described above for the case of

a finite T∗ = Tδ, the internal ellipsoidal estimate of the set
X (T ;X0) and the external ellipsoidal approximations of the
setX (T ;X0) + εS (for any ε > 0) are found.

IV. EXAMPLE

Consider the following control system(0 ≤ t ≤ T ):
{

dx1(t) = x2(t)dt + du1(t),
dx2(t) = du2(t).

(18)

Find the ellipsoidal estimations of the reachable set. Here we
takeX0 = {0} and the setU generated by the ellipsoid

E0 =
{
l ∈ R2 | l′Q−1

0 l ≤ 1
}

, Q0 =
(

a2 0
0 b2

)
,

wherea, b > 0, a, b ∈ R.
In these example the reachable set is the convex hull of

union two ellipsoidsE0 = E(0, Q0) andE1 = E(0, Q1)

X (T, {0}) = co(E0 ∪ E1), (19)

E0 =
{
x ∈ R2 | x′Q−1

0 x ≤ 1
}

, Q0 =
(

a2 0
0 b2

)
,

E1=
{
x ∈ R2 | x′Q−1

1 x ≤ 1
}

, Q1=
(

a2 + b2T 2 b2T
b2T b2

)
.

The formula (19) was calculated using the maximum
principle for impulse system (18) with given ellipsoidal
restriction [13].

Algorithm of constructing the external estimate of the
reachable set may be illustrated in this example.

Figure 1 shows the transformed ellipsoidsẼ0 (it is marked
by number1 at Fig. 1) andẼ1 (it is marked by number
2 at Fig. 1). The ellipsoidẼ+ (3, Fig. 1) is minimal with
respect to inclusion among all ellipsoids containingẼ0

⋃ Ẽ1

and having a matrix of diagonal form.
When we return to the space ofx - coordinates we get the

ellipsoidsE0 (1, Fig. 2) andE1 (2, Fig. 2). The ellipsoidE+

(3, Fig. 2) is the solution of auxiliary problem 1.
The external ellipsoidal estimates and exact reachable set

are presented at Fig. 3 for some values ofT .



The tube of trajectories of the system (18) and the dynam-
ics of external estimates ofX (T ) are indicated at Fig. 4.

Fig. 5–8 illustrate the internal estimation algorithm. The
transformed conjugate ellipsoids̃E∗0 and Ẽ∗1 are shown at
Fig. 5 (1 and 2 respectively). The ellipsoid̃E∗2 (3, Fig. 5)
is the maximal ellipsoid with respect to inclusion among all
ellipsoids with diagonal matrices containing in the intersec-
tion Ẽ0

⋂ Ẽ1. Denote by symbol(Ẽ−)∗ the upper estimate
ellipsoid (4, Fig. 5) for the intersectioñE∗0∩Ẽ∗1 . This ellipsoid
is similar to the ellipsoidẼ∗2 (see step 3 of the above
algorithm of internal estimation).

We construct after that the conjugate ellipsoid̃E− and
return to the space ofx - coordinates. The exact reachable
setX (T ) is given at Fig. 6 (4). The setX (T ) is the convex
hull of two ellipsoidsE0 (1, Fig. 6) andE1 (2, Fig. 6).

The internal ellipsoidal estimateE− (it is marked as3) of
X (T ) is shown at Fig. 6.

The tube of trajectories of the system (18) and the dynam-
ics of internal estimates ofX (T ) are indicated at Fig. 8.

Figure 9 shows the tube of trajectories of the system (18)
and its internal and external estimates.
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Fig. 1. Auxiliary ellipsoidsẼ0, Ẽ1, Ẽ+ for external estimation.
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Fig. 2. External estimationE+ of union of two ellipsoidsE0, E1.
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Fig. 3. The dynamics of external estimates ofX (T ).



Fig. 4. The dynamics of external estimates ofX (T ) and the tube of
trajectories of the system (18).
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Fig. 5. Auxiliary ellipsoidsẼ∗0 , Ẽ∗1 , Ẽ∗2 , (Ẽ−)∗ for internal estimation.
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Fig. 6. Internal estimateE− of union of two ellipsoidsE0, E1.
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Fig. 7. The dynamics of internal estimates ofX (T ).

Fig. 8. The dynamics of internal estimates ofX (T ) and the tube of
trajectories of the system (18).

Fig. 9. The dynamics of external and internal estimates ofX (T ) and the
tube of trajectories of the system (18).


