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Abstract—The paper is devoted to the state estimation Basing on the techniques of so-called ellipsoidal calculus
problem for impulsive control systems described by linear [1], [3], [4] a new state estimation approach that uses the
differential equations containing impulsive terms (or measures). - gpaig| structure of the studied impulsive control problem
The state estimation algorithms that use the special structure of . .
linear impulsive control problem and are based on techniques IS .pre§ented here. The. examples ,Of construction of such
of external and internal ellipsoidal approximations of trajectory ~ €llipsoidal external and internal estimates of reachable sets

tubes of uncertain impulsive systems are presented here. The of linear impulsive control systems are given also.

examples of construction of such ellipsoidal estimates of the

reachable sets and trajectory tubes of linear impulsive control Il. PROBLEM FORMULATION

systems are given. _ . _ _
Consider a dynamic control system described by a differ-

[. INTRODUCTION ential equation with impulsive contrel(-):

Number of researche; is.devoted to thg different aspects gy — A(t)zdt + du, x(—0) =m0, t€[0,T], (1)
of the theory of optimization of dynamic systems with _
generalized (impulse) control. The impulsive control problen®' in the integral form [3],
of the trajectory tube of the system described by linear t
differential equations is considered in the paper. This SYSteMy: ()= (t; u(-), mo)=X (t)z0 + /X(t)X_l(T)du(T). )
contains impulsive terms (or measures) and uncertainty on J
initial date [1]-[4]. ) ) )

There is a long list of publications devoted to impulsive1ere we assume thak(z) is a continuous: xn - matrix func-
control optimization problems, among them we mention her#on, X (¢) is the fundamental matrix solutioX = A(¢) X
only the results related to the present investigation [5]-[13fX (0) = 1), u(:) € V;" where ;" means the space of-
The question arises how the results of classical control theo¥pctor functionsu(-) such thatu(t) is continuous from the
established for uncertain dynamical systems can be extendd@ht on [0,7) with u(—0) = 0 and
to the case of uncertain impulsive systems. It is impotent that k
in the considered problem the control influences are limited Volu()] = sup > [lu(t;) — u(ti—1)|, < oo
not only by usual requirement of finiteness of variation but by {ti} =1
special restriction of ellipsoidal type. Particularly, the vectors N 1
of jumps of generalized controls under this restriction must » !
lie in the given ellipsoid of an appropriate finite-dimension lully Z [l (1<p<oo)
space. Such problems arise when the possibilities of control
of impulsive dynamic system are constrained by non-eveffhereu=(us, ..., ux) "?m‘_”i;_o =to<... <t =T.
restrictions for different directions. For example, one can L€t &o be an ellipsoid ink™:
consider th.e movement of the flying devic:_a§ near the earth & = {leR™| I'Qol<1},
surface or in the narrow gorges. The specific features of an ) ) _ N o )
impulse control system result in the necessity of constructinghereQo is a given symmetric positive definitex n matrix,
ellipsoidal estimates for a convex hull of the union of ave introduce a special restricti@ on the control functions
family of ellipsoids (this problem does not arise in the case(*) in the spacé/;* of functions of the bounded variations
of estimating states of dynamic systems with controls " [0,77] [12]. DenoteCy the space of continuous-vector
classical type) fUnCUOnSy(-) with the norm

The aim of the paper is to find the external and internal set- ) _ ¢

. : . 1Y()lloc.g = max [ly(t)lq-
valued estimates of the reachable sets of impulsive control 0<t<T
systems with special ellipsoidal constrains on the admissibjgis well known that the spacg,’ is dual to the space’y
values of control functions and on the initial state vectorq.‘/;n = C)wherep=1if g=o0,p=ocif ¢=1and
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and its conjugate€™ C V", Theorem 1:[12] Under the assumption P we have

T X(T)=co | J £00,Q-), (6)
U= ={ut) € V7| [uodut < 1. e,
0 £0,Q,)={z € R" | 2/Q; 'z <1},
Vy(-) € CF y(t) € &, V[0, T} Q, = X(T,7)QoX'(T, 7).
Definition 1: A control u* is admissible ifu(-) € U. Proof: The proof of this theorem is based on the
In particular, under such restriction vectors of impulsivetructures of the reachable se(T’) :
jumps of controlsAu = wu(t;11) — u(t;) € U have to belong T
to the ellipsoid X(T) = U /X(T, 7)du(T)
E={z € R"| ZQy'z<1}. uetp

. I and the special “ellipsoidal” restrictioln on controls. =
We will assume that the initial value, for the system (1) P P

is unknown but bounded with a given boumg € Xj, A. External Ellipsoidal Estimates

Xo ={xo € R"| z{R 'zo <1}, 4) In order to construct the external estimate, we consider

where R is a symmetric positively defined x n matrix. the auxiliary problem.

Denote Problem 1:Two ellipsoids are given
X(t; X)) = U U x(t;u(-), xo). S ={rc€R"|2Qy'x <1},
o do uclt & ={reR"|2Qr'z <1}. @)

The setX (¢; Xp) is actually the reachable set of the impulsive o
differential system (1) from the initial set, at the instant Find an external ellipsoid
t for all possi_ble admissible controts(-)_. _ Ef={reR" | Q") 'z <1}
So the main problem of the paper is to find the external _ _ _
and internal estimates of ellipsoidal type for the reachabi@at contains&, U &; (therefore, the€* will contain the

set X (T'; X,) basing on the special structure of the data  convex hullco(& U €1)). Equivalently, it is required to find
andid. the symmetric positive definite matrig™ such that for all
[ € R™ we have

I11. MAIN RESULTS ELLIPSOIDAL ESTIMATES (l’Qol)% < (l’Qﬂ)é, (l’Qll)% < (l’Q*l)%, (8)

In this sec_tlon we apply the technlques of Fhe eIhpsmdaénd it is desirable also to find the ellipsafd that has the
calculus to find the external and internal estimates for the

reachable sett(T; Xo). minimal possible volume [4].
We takeX; = {0} first and denotet (T") = X' (T;{0}) to We need to do three consequent steps to solve the Prob-

be a reachable set of (1) and lem 1.
1 1 Step 1.Let \,..., A, be the roots of the equation
T*:{T*G[O, T” Ell* 7é Oa (G(T*v l*)) 2= r<na<x (G(Tv l*)) 2 }a
0<7<T ) |QoX — Q1] =0 (9)
G(1,1) =I'X(T, 7)Qo X' (T, )l, (note that\; > 0 (i = 1...n) are the eigenvalues of matrix
-1
X(T,7) = X(T)X (7). Qo Qu). ,

DenoteB = QQ%QlQ(}?. The matrixB is also symmet-

We will consider further, that the following condition is ric and positive definite, and it can easily be seen that

executed are also the eigenvalues of matrx [14]. There exists an
orthogonal matrix(/ such that [14](MM' = M'M =1)

M'BM = diag{\,..., \n} = W2 (10)

Assumption PThe setT, is finite:

T = {Te1,Ts2, -+, Tam } C [0, 7.

. . . We transform the coordinates from the vecjoto the new
Remark 1:The class of systems for which this assumption oo

holds i i i it is fulfilled in E | variable s that satisfies the equality = Qg Ms. Under
0lds 1S not emply, €.9. 1 1S fullilied In Example. this transformation the ellipsoids,, £ (13) become the
Remark 2:In the general case, the extremal set ellipsoids
T, = {7 €10, 7] (G(T*,l))% = ()ElafT(G(TJ))%} & ={se€ R"s's <1}, (11)
. & ={se R"s(W?) s <1} (12)

should not be finite and may depend énTherefore the
assumption P is essential. whereW?2 determined in (10).



Step 2.We construct the ellipsoidt D & U £; where simultaneously to diagonal forms. The transformed ellipsoids
- < have forms (11, 12):
Et={seR"|s Q") 's<1},

QJF = diag{#h cee mun}a

wi =max{l, \;}, i=1,2,...,n

& ={s € R"|s's <1},
£ ={seR"s(W?)ls<1}.

Step 2.In order to find the internal ellipsoidal estimation
of co(& U &) we use the fact that the intersection and the

Theorem 2:[12] The ellipsoid€* constructed in this way Uunion for overlapping sets are dual operations [15].

solves the problem 1 for the sefs and &; and is minimal Lemma 1:[15] SupposeM, M;, M, are convex com-
with respect to inclusion among all ellipsoids containlngpacts inE". Then A

& U & and having a matrix of diagonal form.

The following theorem holds.

1) If 0 € M, thenM* is convex compacts iR".
Theorem 3:[12] The ellipsoidS ™ is minimal with respect  2) If 0 € M, then(M*)* = M.

to the volume among all ellipsoids that containu &;. 3) If My C My then M7 O M5,

The proof of these theorems follows from the properties 4) If Ac R"*™ anddet A # 0 then(AM)*=(A")"t M*.
of ellipsoids and the result ([4], corollary 5.1). 5) If 0 € M;NMjythen(MiNMz)* = co(M;UM3).

Step 3.We return to the space of - coordinates and  From Lemma 1 it follows that for transformed ellipsoids
therefore we get the inclusion &y and&; we have

Et={zeR"|2(QT) e <1} D (&UE), E-Ceo(fUéE) e (ET) DENE:.
Q _ QZM Q+MQ§ Notice thatgg = (‘:'0,
It should be noted that, based on the solution of the auxil- & ={s € R"|sW?s < 1},

iary problem, we can also solve the problem of constructing
an external estimate foY' (7'). For this purpose, we construct
at the first stage an ellipsoifl,” = £* using&,, and &, A >0 (i =1...n) are the eigenvalues of matri@; *Q,,
according to the scheme considered. Then, u§jh@ndé&,,, defmed in (9). 0
we constructt;”, and so on. The assumption P guarantees
the finite number of such steps. The final ellipsoid contains Step 3.Now we need to construct the upper ellipsoidal
X(T). bound foré; N &f.

There are different approaches to the ellipsoidal estimation
of intersection of two ellipsoids, e.g. [1]-[4], [11], but un-

B. Internal Ellipsoidal Estimates
fortunately non of them provided the minimal volume upper
In order to construct the internal estimate, we consider tr@stlmate

auxiliary problem.

W? = diag{\1,..., \n},

The approach given below allows to estimate the reachable

Problem 2:Two ellipsoids are given set enough precisely and it can be easy calculated.
o At first we construct the ellipsoid; that is contained in
& ={zeR"[2'Qy v <1}, the intersectiorf; N &}
Si={zeR"|2Q 'z <1}, (13) E ={s€ R"s'Q5's < 1},Qq = diag{n1,...,mm},
Find the internal ellipsoid n =min{1,1/N}, i=1,2,...,n
E={zeR" Q) z<1} Further we find the ellipsoid similar #6; with minimal pos-

that is contained iro(&, U & ). Equivalently, it is required sible volume among all ellipsoids containing the intersection

to find the symmetric positive definite matri@~ such that & NEf. Itis not difficult to calculate similarity coefficient:

for all [ € R™ we have f— N2l —A2) +m (A — 1)

Qo) > ('Q D3, QDI > (IQ ). (19) mrz(d = A2)
Therefore we get the ellipsoid
We need to do some consequent steps to solve the Prob- 5 ~
om 2. q P () ={s e Rs(Q) s <1},
Step 1.This step is the same as step 1 for externajhere
estimates. Therefore, to solve this auxiliary problem 2 we O~ = kQ, = diag{kn1, ..., ki) (15)
should find at the first step non-singular transformation of ’ "
matrices Qq, @1 of ellipsoids &, £ which leads them n; is defined above.




Step 4.The conjugate ellipsoid to th(af*)* is the internal Then, we obtain from (17)

estimate of the union of transformed ellipsoifisand &;,
psoifts ! max f(7,1) < [max f(r,1) < max f(r 1) +e.
<r< TETs

E ={secR"{Q s<1}, TETs
.. Using that this and the fact that the functigf{r,l) is
whereQ™ is in (15). positively homogeneous, we obtain inequality ?}6).) [ ]
Theorem 4:The ellipsoid £~ constructed in this way
solves the problem 2 for the sefs and&;.

Proof: The proof follows from the algorithm of
constructing the diagonal matrigQ)—)~" of ellipsoid £, co( U &) C cof U &) C cof U £) +€8.

properties of ellipsoids and Lemma 1. | rETs re[0,7] rETs

Corollary 1: If the conditions of the theorem 5 are valid
then the inclusions are true

Step 5.Then one can return to the original coordinates.  Proof: The proof follows from the formula
The final calculation gives the ellipsoif~ (the internal
estimate) pllco | &) = gg%f(ﬂl)

TETs
£ ={zeR" | Z(Q ) 'z <1} Ccol€UE, :

and estimate (16) of Theorem 5. [ ]
Q = Qé M’(Q‘)‘lMQé. Applying the procedure described above for the case of
a finite T, = Ty, the internal ellipsoidal estimate of the set
Assume now that the ellipsoid X(T; X,) and the external ellipsoidal approximations of the
Xo = {wo € R"| zhR 1wy <1} set X (T; Xy) + &S (for anye > 0) are found.
is done instead of the above assumptitin= {0}. In this IV. EXAMPLE

case we have

X(T, Xy) = £(0, X (T,0)RX’(T,0)) + X(T),

Consider the following control systed < ¢ < T'):

dxl(t) Jiz(t)dt + dU1 (f),

Find the ellipsoidal estimations of the reachable set. Here we
etake Xo = {0} and the set/ generated by the ellipsoid

and we need only to apply the estimate procedure for sum (18)

of the ellipsoid £(0, X (T,0)RX’(T,0)) and the ellipsoid
which is contained int'(T") [3], [4].

Based on the solution of the auxiliary problem 2, w
can also solve the problem of constructing an internal es-
timate for reachable set(T'). For this purpose we apply

this procedure consequently. assumption The assumption P
guarantees the finite number of such steps. The final eIIipso\fv erea,b>0, a,b€ A. .
In these example the reachable set is the convex hull of

's contained inX' (7). union two ellipsoidsty — £(0, Q) and &y = £(0,Q1)

2 1A—1 a’> 0
EOZ{ZGR ‘ lQolgl}v QOZ 0 b2 ’

C. General Case X(T,{0}) = co(E U &), (19)
It was assumed before that the assumption P is valid. Next 2 0
we omit the assumption P and consider the general case. Theo = {33 €R®| x'Qaloc < 1} ; Qo= ( 0 b2 ) )
following theorem is true.
i ini - S Y
Theorem 5:For anye > 0 there existy > 0 and a finite  &,={z € R? | 2/Q{ 'z < 1}, Q1= ( 2T B2 ) .

setTs C [0,T] such that for all € R the inequalities hold
The formula (19) was calculated using the maximum

maX(G(TvZ)FSOI;%T(G(TvZ)PSEET};(G“W“WH- principle for impulse system (18) with given ellipsoidal

T€Ts
. (16)  restriction [13].
Proof: Introduce the notation Algorithm of constructing the external estimate of the
F(r.0) = p(|X(T, Xp)) = (' X (T, ) Qo X" (T T)l)% reachable set may be illustrated in this example.

Figure 1 shows the transformed ellipsoiis(it is marked
It is obvious that the functionf(r,l) is continuous in by numberl at Fig. 1) and&, (it is marked by number
[0,T] x S, whereS = {I € R"| ||I||» < 1}. Therefore, for 2 at Fig. 1). The ellipsoidc€™ (3, Fig. 1) is minimal with
anye > 0 we can findd > 0 such that respect to inclusion among all ellipsoids contain'ffng &
. and having a matrix of diagonal form.
(D) = f(7. D] < e (17 When we return to the space of coordinates we get the
for anyl € S and anyr,7 € [0,7] such thatjr — 7| < §. ellipsoids&, (1, Fig. 2) and&; (2, Fig. 2). The ellipsoidc™
Let set (3, Fig. 2) is the solution of auxiliary problem 1.
The external ellipsoidal estimates and exact reachable set
Li={0=n<n<.. <n=T} 12555 I7i=7i-1] <0- " are presented at Fig. 3 for some values/of



The tube of trajectories of the system (18) and the dynam-
ics of external estimates ¢€(T") are indicated at Fig. 4.

Fig. 5-8 illustrate the internal estimation algorithm. The ) ‘
transformed conjugate ellipsoidg; and £; are shown at | alb=2T=1 |
Fig. 5 (1 and 2 respectively). The ellipsoid; (3, Fig. 5) 1 As2
is the maximal ellipsoid with respect to inclusion among all gl |
ellipsoids with diagonal matrices containing in the intersec- 05[ 1
tion & (N &,. Denote by symbol£~)* the upper estimate 0

ellipsoid @, Fig. 5) for the intersectiodi; NE;. This ellipsoid sl % 1)
is similar to the ellipsoid€; (see step 3 of the above
algorithm of internal estimation).

We construct after that the conjugate ellipsdéid and L5r 3 il
return to the space af - coordinates. The exact reachable -2 ] : ] ‘ ]
setX(T) is given at Fig. 6 4). The set¥(T) is the convex
hull of two ellipsoids&, (1, Fig. 6) and&; (2, Fig. 6).

The internal ellipsoidal estimatg™ (it is marked as3) of o
X(T) is shown at Fig. 6. Fig. 1. Auxiliary ellipsoids&o, £1,ET for external estimation.

The tube of trajectories of the system (18) and the dynam-
ics of internal estimates of'(7T") are indicated at Fig. 8.

Figure 9 shows the tube of trajectories of the system (18)
and its internal and external estimates.
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Fig. 3. The dynamics of external estimatesofT’).
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Fig. 4. The dynamics of external estimates B{7") and the tube of -4 -3 -2 -1 0 1 2 3 4
trajectories of the system (18).

Fig. 7. The dynamics of internal estimates®{T).
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Fig. 5. Auxiliary ellipsoidséy, £, €5, (€7)* for internal estimation.  Fig. 8. The dynamics of internal estimates &(T") and the tube of
trajectories of the system (18).
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Fig. 9. The dynamics of external and internal estimate&’¢1") and the

Fig. 6. Internal estimat€~ of union of two ellipsoidsgy, &; . tube of trajectories of the system (18).



