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This letter presents a quantitative theory of resonant mixing in time-dependent volume-preserving
3D flows using a model cellular flow introduced in [T. Solomon and I. Mezic, Nature 425, 376 (2003)]
as an example. Specifically, we show that chaotic advection is dramatically enhanced by a time-
dependent perturbation for certain resonant frequencies. We compute the fraction of the mixed
volume as a function of the frequency of the perturbation and show that, at resonance, essentially
complete mixing in 3D can be achieved.

PACS numbers: 47.51.+a, 47.61.Ne, 47.52.+j

In recent years, a number of studies of mixing via
chaotic advection in time-dependent flows found the mix-
ing efficiency to exhibit a pronounced resonant depen-
dence on the frequency of the time-periodic component
of the flow. Qualitatively similar results were obtained in
the numerical and experimental studies in the presence
of molecular diffusion [1–3] as well as without it [4–6],
suggesting that molecular diffusion likely does not play
a significant role in this phenomenon. The importance
of resonance phenomena in chaotic advection was recog-
nized in [7] and later considered in [6, 8], however no
quantitative theory of the process was constructed.

In the present letter we develop such a quantitative
theory capable of describing both how quick and how
thorough the mixing via chaotic advection is, using the
3D time-dependent volume-preserving flow

ẋ = − cos(πx) sin(πy) + ε sin(2πx) sin(πz)
+ πb sin(πx) sin(πy) sin ωt,

ẏ = sin(πx) cos(πy) + ε sin(2πy) sin(πz) (1)
+ πb cos(πx) cos(πy) sin ωt,

ż = 2ε cos(πz) [cos(2πx) + cos(2πy)] .

System (1) is a linearization of the flow introduced in
[4] as a qualitative model of Lorenz-force driven cellular
flow in a channel of rectangular cross-section (−0.5 <
y, z < 0.5). The solutions (or streamlines) represent the
trajectories of passive tracers (e.g., dye particles) car-
ried by the flow. The terms proportional to ε describe
a weak correction to the main flow (Eckman pumping).
The time-dependence of the flow represents an external
perturbation describing the shift, with amplitude b, of
the boundaries between the cells (planes x = n + 1/2,
n ∈ Z). Since the dynamics in all cells is identical, we
will consider only the cell with −0.5 < x < 0.5.

Following [4], we consider the limit 0 ≤ ε, b � 1. The
unperturbed system (ε = b = 0) possesses two integrals
of motion:

z = const, Ψ ≡ cos(πx) cos(πy) = const,

where Ψ is proportional to the streamfunction of the un-
perturbed flow in the (x, y) plane. All the streamlines
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FIG. 1: Unperturbed system: (a) typical streamlines in the
z = const plane and (b) the frequency Ω(Ψ).

Γz,Ψ of the unperturbed flow are closed (see Fig. 1(a)),
with the period of motion

T (Ψ) = 2
∫ xmax

xmin

1
ẋ

dx = 4
∫ xmax

0

dx√
cos2(πx) − Ψ2

,

where xmin = −xmax = (1/π) cos−1 Ψ. The correspond-
ing frequency Ω = 2π/T is shown in Fig. 1(b) and ranges
between Ω = 0 at the boundaries of the cell and Ω = π
in the center. On every Γz,Ψ we can introduce a uni-
form phase χ mod(2π) such that χ = 0 on the positive
x-axis and χ̇ = Ω. Every interior point of the cell can be
specified by the coordinates Ψ, z, and χ.

Next, consider the effect of the Eckman pumping (ε >
0), ignoring the time-dependent shift for the moment
(b = 0). In this limit, flow (1) is steady but conserves
neither z, nor Ψ. The dynamics is characterized by two
different time scales: the variable χ (and hence x and y)
is fast (changes on O(1) time scale), while the variables
z and Ψ are slow (change on O(1/ε) time scale) and can
be described by the averaged equations (see [9])

Ψ̇ = −ε
π

T (Ψ)
∂Φ
∂z

, ż = ε
π

T (Ψ)
∂Φ
∂Ψ

. (2)

In (2),

Φ =
16
π

cos(πz)
∫ xmax

0

Ψ
cos(πx)

√
1 − Ψ2

cos2(πx)
dx (3)

is the flux of the perturbation (ε-dependent terms in (1))
through a surface bounded by a streamline Γz,Ψ. It fol-
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FIG. 2: (a) Projection of averaged streamlines on the (Ψ, z)
plane. The vertical line is the 1 : 1 resonance and the bold
curve is ΓΦ∗ . (b) Plots of Ω/ω (dashed line) and Φ (solid line)
vs. time for complete flow (1) with ε = b = 10−4 and ω = 2.5.

lows from (2) that Φ is an invariant of the averaged sys-
tem and, hence, is an adiabatic invariant (AI) of the exact
system: away from the cell boundaries, where Ω(Ψ) = 0,
the value of Φ oscillates with an O(ε) amplitude [10].

Trajectories with b = 0 lie on nested tori τΦ defined as
the level sets of the AI. The (quasi-periodic) motion along
these tori corresponds to motion (with slow period Tε(Φ))
of averaged system (2) along closed curves ΓΦ on the
(Ψ, z) plane (see Fig. 2(a)). The AI reaches its maximum
value Φc ≈ 0.7845 on a closed curve that resides in the
center of the nested tori and is given by

z = zc = 0, Ψ = Ψc ≈ 0.418. (4)

The minimal value Φ = 0 is reached at the cell boundary.
Addition of the time-dependent perturbation can make

the structure of the flow much more complex. Numerical
simulations show that the limit 0 < b � ε is qualita-
tively similar to the case with b = 0 and ε > 0. The limit
0 < ε � b is qualitatively similar to the case with ε = 0
and b > 0, where the flow is effectively 2-dimensional and
a narrow chaotic domain of O(b) width appears near the
cell boundaries. The case where b and ε are of the same
order is of the most interest. Hence, in what follows, we
assume β ≡ b/ε = O(1). Furthermore, since we are inter-
ested in resonant dependence of mixing on the frequency
ω of the perturbation, we will take ω = O(Ω) = O(1).

The exact equations for the slow variables are

Ψ̇ = −επ sin(πz)Ψ (2 − cos(2πx) − cos(2πy))

− 1
2
επ2β sin(2πy) sin(ωt), (5)

ż = 2ε cos(πz) (cos(2πx) + cos(2πy)) ,

If Ω and ω are incommensurate, then averaging over Ω
and over ω can be performed independently (see, e.g.,
[10]). In this case, the time-dependent terms in the ex-
pression for Ψ̇ average out, so we would expect AI (3) to
be conserved as before. Results of numerical integration
of (1) over the time period of order 1/ε are presented
in Fig. 2(b). The AI remains essentially constant except
for short periods of time when Ω(Ψ(t)) ≈ ω. This fact
indicates that the breakdown of adiabatic invariance is

a consequence of resonant processes. A quantitative de-
scription of these processes can be constructed based on
the theory of resonance phenomena in multiple-frequency
systems developed recently by Neishtadt [10].

As the value of Ψ slowly drifts, so does Ω(Ψ). Hence,
at certain values of Ψ, a resonance condition

nΩ(Ψ) − ω = 0 (6)

will be satisfied for some non-zero integer n. Since Ω is
independent of z, the resonance surfaces Rn defined by
(6) are vertical cylinders in the physical space or straight
lines Ψ = Ψn(ω) = const in the slow plane (see Fig. 2(b)).

Near Rn we can expect neither the averaged system to
adequately describe the exact dynamics, nor the value of
Φ to be conserved. Hence, we must consider the dynamics
near resonances separately. Introduce a pair of new phase
variables:

γ = nχ − ωt, ϕ = χ, (7)

such that (1) can be rewritten as

γ′ =
1√
ε

(nΩ − ω) ,

Ω′ =
√

ε
∂Ω
∂Ψ

Ψ̇
ε

, z′ =
√

ε
ż

ε
. (8)

In (8), the prime denotes the derivative with respect to
the rescaled time t =

√
ε t and Ψ̇, ż were defined in (5).

Of the new phases, γ is slow and ϕ is fast. Thus, we
can average equations of motion over ϕ (so-called partial
averaging).

For most of the initial conditions, tracers pass through
the vicinity of resonance in a relatively short time and
the value of Φ undergoes a relatively small jump. In the
first approximation, we can fix the slow variables (Ψ, Ω
and z) at their resonant values, which yields a forced
pendulum-like equation for γ:

γ′′ =
1√
ε

nΩ′ = an + bn cos γ. (9)

In (9), an and bn are the averages of the first and the
second terms defining Ψ̇ in (5) over the fast period Tn =
T (Ψn), respectively:

an = −ω

2
Ψ sin(πz)

∂Ω
∂Ψ

∫
Tn

(2 − cos(2πx) − cos(2πy)) dt,

bn =
π

4
ωβ

∂Ω
∂Ψ

∫
Tn

sin(2πy) sin(ωt) dt.

In the definition of an, bn (and cn below), x = x(t), y =
y(t) is a solution of the unperturbed system for Ψ = Ψn

such that χ = 0 at t = 0. Note that an, bn, and cn are
functions of ω only. Similarly, the average of Φ̇ over Tn

can be computed using (2) and (5), yielding

〈Φ̇〉 =
〈

∂Φ
∂Ψ

dΨ
dt

+
∂Φ
∂z

dz

dt

〉
= −ε

π2

2
β〈ż sin(2πy) sin(ωt)〉

= επβ cn cos(πz) cos γ, (10)



3

where the coefficient cn is given by

cn = −
∫

Tn

(cos(2πx) + cos(2πy)) sin(2πy) sin(ωt) dt.

Finally, the jump of the AI on crossing the resonance
can be computed as a change in Φ over a time interval
(t1, t2) during which the resonance is crossed once, at
time t∗, and such that |t1,2 − t∗| ∼ 1/ε:

ΔΦ =
∫ t2

t1

Φ̇ dt ≈
∫ t2

t1

〈Φ̇〉 dt =

= −2πs
√

ε β cn cos(πz)
∫ γ(t∗)

s∞

cos γ√
2 (h − V )

dγ, (11)

where V = −anγ − bn sinγ, h = V (γ(t∗)), and s =
sign(an). The dependence of ΔΦ on the order of reso-
nance is determined by the fact that an, bn, and cn are
Fourier coefficients of smooth functions, and, hence, de-
cay exponentially. Thus, only low-order resonances play
important role in the dynamics:

ΔΦ ∼ √
ε e−αn, (12)

where α is some constant. The value of ΔΦ can be calcu-
lated exactly for any initial condition. However, a small
change of order ε in the initial conditions produces, in
general, a large change in ΔΦ. Hence, for small ε it is
possible to treat ξ as a random variable uniformly dis-
tributed on the unit interval [10].

Generally, a non-zero ensemble average of ΔΦ results
in the drift of Φ. However, in the current problem, two
successive crossings occur at almost opposite values of
z. Thus, it can be shown that they cancel each other
on average, and the aggregate change of Φ on one pe-
riod of the slow motion has zero mean. Individually, the
jumps on two successive crossings can be considered to
be statistically independent random processes [11].

It should be mentioned that few tracers may follow
trajectories near the resonance surface (capture into res-
onance), qualitatively different from the ones considered
above (scattering on resonance). It was shown in [10]
that capture can be considered a probabilistic process,
too: for a ball of initial conditions, only a tiny fraction,
of order

√
ε, is captured. Captured tracers move near the

cylinder Ψ = Ψn(ω) and, due to the symmetry z → −z
of (3), are released from resonance at the value of z op-
posite to that at which the capture occurred. It follows
from (3) that (in the first approximation) the values of
Φ before the capture and after the release are the same.
Thus, capture does not contribute to the change in the AI
and hence to the mixing process. Capture into resonance
will be discussed in detail in a subsequent publication.

It was shown before that the accumulation of jumps
of an adiabatic invariant after many resonance crossings
leads to the diffusion of the AI, chaotic advection, and
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FIG. 3: Partial and complete mixing at ε = b = 0.05. z = 0
Poincaré section of the flow: (a) ω = 4.0, (b) ω = 2.5.

mixing [6]. Two useful metrics that describe the effi-
ciency of chaotic advection are the size of the chaotic
domain and the characteristic rate of mixing inside the
chaotic domain. We start by describing the size (and
shape) of the chaotic domain.

On every period Tε(Φ) of the slow motion along a given
trajectory (see Fig. 2(a)), the value of Ψ changes between
Ψmin and Ψmax. If no (low-order) resonance Ψn falls
between Ψmin and Ψmax, then that trajectory (and all
trajectories inside of it) remains regular. If, on the other
hand, the trajectory crosses a resonant surface, the AI
experiences jumps and the motion becomes chaotic.

In the ε → 0 limit, the boundary between the chaotic
and the regular domains is, thus, given by the trajectory
ΓΦ∗ that (i) touches a resonance surface and (ii) has
the largest value Φ among all such trajectories on the
(Ψ, z) plane. (Condition (ii) is necessary when multiple
resonances are considered). In the physical space the
boundary is formed by the corresponding torus τΦ∗ . The
corresponding value of the AI is given by (3) with z = 0
and Ψ = Ψn (see Fig. 2(a)). The Poincaré section of
the complete flow (with periodic boundary conditions at
x = −0.5 and x = 1.5) by the plane z = 0 (see Fig. 3(a))
confirms that the space inside the torus τΦ∗ corresponds
to the regular domain discovered in [4], while the rest of
the physical space belongs to the chaotic domain. Moving
the frequency ω closer to resonance completely wipes out
the regular domain (see Fig. 3(b)).

The width d of the regular domain can be computed
for any value of ω (see Fig. 4). For 0 < ω � 1, all the
resonances are located near Ψ = 0. As ω is increased,
the first, 1 : 1, resonance penetrates deeper into the cell.
For 0 < ω ≤ π, ΓΦ∗ is tangent to the resonance Ψ = Ψ1.
As ω approaches π, the 1 : 1 resonance moves out of
the cell and the 1 : 3 resonance becomes dominant for
π < ω � 3π (it can be shown that even resonances do
not lead to jumps in Φ and can be disregarded). Then
the process repeats itself: as ω is increased further, higher
and higher resonances become dominant. Finally, as ω →
∞, there are infinitely many resonances and they cover
all the domain in Ψ. However, the impact of the high
resonances is negligible (ΔΦ ∼ e−αn).

Complete mixing can be achieved by eliminating the
domain of regular dynamics. This can be accomplished
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FIG. 4: The width d of the regular domain (along the x-axis)
as a function of the perturbation frequency, ω: solid line –
theoretical prediction, dots – numerical simulations. Other
parameters are ε = b = 10−4.

by setting the frequency ω of the perturbation such that
Ψn(ω) = Ψc for some n. More precisely, the resonance
must be within the distance |Ψn − Ψc| ∼ √

ε, as the
chaotic domain penetrates inside ΓΦ∗ by an O(

√
ε) dis-

tance [12]. This property, negligible in most similar prob-
lems, is important here as the magnitude of the jumps
vanishes at Ψc. Indeed, Φ̇ ∼ ż according to (10), so
ΔΦ = 0 at Ψ = Ψc, as ż = 0 there. Since the width of
the regular domain d ∼ |Ψn(ω) − Ψc|, we find the width
of the resonant peaks (where d ≈ 0) to scale as Δω ∼ √

ε
(see Fig. 2f of Ref. [4]). The finite penetration depth
also explains why the theory overestimates the width of
the regular domain for finite ε (see Fig. 4).

In defining the regular and chaotic domains, we as-
sumed that the system evolves over an infinite time.
However, for a finite time interval that is characteris-
tic of a given experiment, the dynamics may be quite
different. While the evolution inside the regular domain
remains qualitatively the same, the thoroughness of mix-
ing in the chaotic domain (as well as the mixed volume
fraction) depends on the time interval of observation.

A characteristic time of mixing can be defined as the
time needed for a localized distribution of initial condi-
tions to diffuse over the entire chaotic domain. For small
times t, the width of the distribution inside the chaotic
domain (and hence the mixed volume fraction) grows as
σ(Φ)N1/2, where N = 2t/Tε(Φ) is the number of reso-
nance crossings, σ(Φ) ∼ √

ε e−αn is the dispersion of ΔΦ
over one slow period Tε(Φ) ∼ 1/ε, and n is the order of
the dominant resonance. It takes N ∼ σ̄−2 resonance
crossings for the distribution to diffuse over the entire
chaotic domain, where σ̄ is a weighted average of σ(Φ)
which can be computed analytically (to be discussed in
more detail in a subsequent publication). Therefore, the
characteristic time of mixing is

TM ∼ Tε N ∼ e2αn/ε2. (13)

A more accurate estimate can be obtained by includ-
ing the contributions to the dispersion from all the reso-
nances that a given trajectory crosses. As only the low-
order resonances are important and they are far apart,
their effect may be considered independently. However,
the weight of different resonances can be quite different,
depending both on the resonance order (e.g., only odd
resonances contribute) and on the value of Ψn (e.g., the
jumps near Ψn = Ψc are strongly suppressed).

Summing up, we have shown that the mixing in the
periodically driven cellular flow considered here is due to
the changes the adiabatic invariant experiences when the
streamlines cross the surfaces on which the perturbation
frequency is in resonance with the natural frequency of
the base flow. The resonant dependence of the mixed
volume on the frequency of the perturbation was traced
to the position of the resonant surfaces. In particular,
we have shown that resonances of different order (e.g.,
1 : 1 or 1 : 3) can be used to achieve essentially complete
mixing inside the cell, albeit after a relatively long time.
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