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Abstract
The definition of the “oscillatory strobodynamics” is

given as an interdisciplinary field of knowledge, which
explores the slow component of dynamics of a system
in the presence of high frequency oscillations in engi-
neering, natural science and sociology systems. The
general approach to the solution of corresponding prob-
lems is formulated. Applications to generic and spe-
cific models employed in different sciences, particu-
larly to oscillatory models, are considered.
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1 Introduction
A number of experimental and theoretical results have

been accumulated by now with respect to the problem
of relatively high frequency action on system dynamics
in physics, chemistry, biology, physiology, economics
and even sociology. Some of those investigations re-
vealed a number of unusual and seemingly paradoxical
phenomena, appearing to be of significant fundamental
and applied value. Unfortunately, the theoretical stud-
ies were carried out by different methods and their re-
sults were treated differently. Many of the fundamental
and applied problems considered there still remain to
be solved. It is hard to indicate a dynamical problem in
any of the above listed sciences for that the investiga-
tion of oscillatory behavior is meaningless.
In this paper the author attempts to formulate a general

approach both to the solution of the above mentioned
problems and to the analysis of the results obtained.
The approach in question consists in transition from the
description of complete (“true”) dynamics of certain
processes to the description of dynamics, which takes
into account only one component of the processes, the
slow one, which is of the utmost interest for applica-

tions. Such dynamics strongly differ from the conven-
tional ones, they are simpler but rather paradoxical; in
particular, the laws of conservation break down there,
a non-conservative system might be transformed into
a potential one and, conversely, additional terms may
appear in the equations or parameter values may be
changed. All aforesaid makes it expedient to single out
the class of studies under review into a separate inter-
disciplinary field of knowledge called oscillatory stro-
bodynamics (OS). This field may be regarded as an area
of the theory of non-linear oscillations or non-linear dy-
namics. One part of OS, namely the vibrational control
of physical processes, can be regarded as an area of cy-
bernetical physics [Fradkov, 2007]. Here we introduce
the definition and the description of the OS approach
and give a brief review of results obtained earlier and a
number of new results.

2 OS approach and definition
The essence of OS approach can be described in the

following way. Let the process dynamics be described
by the following relation:

Z(x, a, t) = 0, (1)

where x is the vector of the system state, a is the vector
of parameters, t is the time, Z is an operator that may
represent finite, differential, integral and other equa-
tions. In presence of fast oscillating actions the same
relation will take the form:

Z [x+ ψx(t, ωt), a+ ψa(t, ωt), t] = F (t, ωt), (2)

where ψx, ψa and F are some functions periodic in
“fast time” τ = ωt and ω >> 1 (Notions such as “fast”
“slow” “high frequency” can be formalized [Blekhman,
2000], [Blekhman, 2004]).
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Practically in all cases the change of the vector x(t)
under high frequency actions can be represented as

x(t) = X(t) + ψ(t, ωt), (3)

where X is slow component, ψ is fast 2π-periodic in
time τ component, with average zero. The component
X is of utmost interest here. By a certain mathemati-
cal procedure and under some assumptions in relation
to operator Z characteristics it is possible to obtain a
relation including only a slow component X:

Z∗(X, a∗, t) = 0. (4)

The method of direct separation of motions appears
to be the most appropriate one to be used in this pro-
cedure. Such method is widely used in solution of
mechanics problems [Blekhman, 2000], [Blekhman,
2004] and can be easily extends to more general case
considered here. Schematically the procedure is as fol-
lows. Since, according to (3), a single initial variable x
is replaced by two variables — X and ψ, equation (2)
in general case can be replaced by the following two
integro-differential equations:

⟨Z [X + ψ + ψx, a+ ψa, t]⟩ = ⟨F ⟩ , (5)

Z [X + ψ + ψx, a+ ψa, t]−
(6)

−⟨Z [X + ψ + ψx, a+ ψA, t]⟩ = F − ⟨F ⟩ ,

where the angular brackets denote averaging at τ = ωt
in period 2π. Further, the equation of fast motions (6)
is solved approximately with regard to the fast vari-
able ψ; the main approximation consists in assump-
tion that slow variables can be considered in this case
as “frozen” i. e. constant parameters. Substitution of
ψ into equation (5) of slow motions yields equation
(4) (for details refer to [Blekhman, 2000], [Blekhman,
2004]). It is worth mentioning that approximation ap-
plied to solution of equation (6) will only slightly af-
fect the accuracy of equation (4) because function ψ is
included in this equation under the sign of averaging.
Meanwhile, it is to be taken into account that the ap-
proximations assumed will hold true only with certain
limitations in the system parameters.
In general, both operator Z∗ and parameter a∗ val-

ues in equation (4) may strongly differ from operator
Z and parameter a, which describe change of the ini-
tial variable x. Usually relation (4) is much simpler
then (2), whereas vectors X and operator Z may have
much less dimensions. Let us call relation (4)the equa-
tion of oscillatory strobodynamics and define the oscil-
latory strobodynamics as dynamics describing evolu-
tion of the slow motion component under the action of
high frequency upon a system or a process.

One can say that the slow componentX is the result of
observations made over x under stroboscopic light with
the frequency of flashes equal to the frequency of oscil-
lations ω. Hence the OS is the dynamics perceived by
an observer watching a system subjected to high fre-
quency influence under stroboscopic light or through
special spectacles preventing him from seeing quick
motions. It seems natural to suppose that the view of
such observer is much simpler than the view of the ob-
server watching the process x directly. It is to be em-
phasized that conservation laws in their usual form are
not valid there.

3 General fundamental equation in natural sci-
ences

3.1 Mechanics
The equation of dynamics

mẍ = F (ẋ, x, t) + Φ(ẋ, x, t, ωt), (7)

where F is a slow force, and Φ is a fast force 2π pe-
riodic in relation to ωt, corresponds to the equation of
OS (vibrational mechanics).

mẌ = F (Ẋ,X, t) + V (Ẋ,X, t), (8)

where V is additional slow force called vibrational
force (the term introduced by P.L. Kapitsa). The ap-
proach of the vibrational mechanics along with the so-
lution of some applied problems was given in books
[Blekhman, 2000], [Blekhman, 2004]. This paper can
be considered as a generalization of that approach.
Principal results are cited below. The following equa-
tions are related to the Navier-Stokes equation and the
equation of continuity:

ρ
∂U

∂t
+ ρ(U · ∇)U = −∇P + µ∇2U + v, ∇ ·U = 0,

(9)
where

v = −⟨u′ · ∇)u′⟩

while U and P are slow components of flow velocity
and pressure , u′ is a fast component of flow velocity,
ρ — density, µ — viscosity coefficient, ∇ — Hamilton
operator.
Note that the first equation (9) corresponds to well

known equation of Reynolds describing turbulent mo-
tion of the viscous incompressible liquid while vector v
represents so called turbulent stresses, and averaging is
accomplished in relation to corresponding “large” pe-
riod. It is to be noted that expressions for V and v in
equations (8) and (9) depend both on right hand parts of
the initial dynamics equations and on approximations
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taken in solution of fast motions equations. A wide
scope of problems is associated with the influence of
vibration on liquids, bulk solids and multiphase media
in vibrating vessels. Of high interest appear to be the
effects of sinking gas bubbles and floating denser parti-
cles, stability of heavy liquid layer floating over lighter
liquid, generation of slow flowing streams (see books
[Blekhman, 2000], [Blekhman, 2004], [Lubimov, et al,
2003], [Ganiev, Ukrainsky, 2008],paper [Fedotovsky,
2006] and collection [Blekhman, Sorokin, 2009b]. Al-
most in all cases those effects can be sufficiently de-
scribed by OS equations.

For one dimensional case the equation of vibrational
hydraulics [Blekhman, 2004]] will correspond to
Bernoulli equation [Blekhman, 2004]

1

2
ρ(U2

1 − U2
2 ) + ∆P +∆Pv = 0, (10)

where ∆P is a “usual” pressure difference, and ∆Pv is
an additional, vibrational pressure difference.

Vibrational rheology, vibrational dynamic materials
and composites. Suppose ε = E(t) + ψε(ωt),
σ =

∑
(t) + ψσ(ωt), then the governing rheological

equation σ = f(ε̇, ε) will be transformed in OS as∑
= F (Ė, E), where function F may be largely dif-

ferent from that of f [7]. Quite another dynamic effect
involving transformation of solid body elasticity under
the action of vibration we see in parametric mechanism
of dynamic materials generation [8] (the effect of In-
dian Magic Rope, transformation of a string into a bar,
increase in pipe rigidity under pulsed liquid flow and
others (see below and [Blekhman, 2004], [Blekhman,
Sorokin, 2009b], [Blekhman, 2007]).

In celestial mechanics problems the results of pulsat-
ing distance between the masses interacting by the law
of gravitation can be interpreted with respect to slow
motion in the relation either as increase of gravity con-
stant or as emergence of additional force. This phe-
nomenon was put into the basis of the invention of
Gravilet [Blekhman, 2000], where dragging force in a
spacecraft is generated by cyclic variation of distance
between the weights of dump-bells placed in the space
ship.

3.2 Heat conduction and diffusion
As for the linear equations describing heat conduc-

tion and diffusion neither the pulsation of the coef-
ficient nor the pulsation of the source will entail any
change in the oscillatory strobodynamics equation at
first approximation though such change is certainly
substantial when a non-linear term is present. Signif-
icant changes will be also caused by introducing the
term ∂2T

/
∂t2, when the equation becomes hyperbolic

one.

3.3 Maxwell’s electrodynamics equations
In their simplest case (flat wave) Maxwell’s equations

can be reduced to a wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (11)

for potential u(x, t):

∂u

∂t
= E,

∂u

∂x
= B,

where c =
√
1/µε is velocity of light in a medium

with dielectric permittivity ε and magnetic permeabil-
ity, µ (in corresponding units), E is electric field in-
tensity and B is magnetic induction. If A2 varies in
accordance with the law A2 = A2

0(1 + α sinωt) the
OS equation in comparison with (3) acquires an addi-
tional term 1

2 (A
2
0α/ω)

2∂4U
/
∂x4 like it was observed

in the string-bar case (see below).

3.4 Electromechanical systems
Speaking of such systems in particular electric ma-

chines one should say that mechanical processes run
much slower than electromagnetic ones. This circum-
stance permits to pass from the classical Gorev-Park
system of equations to simpler equations of slow mo-
tions i.e. OS equations [9]. The same can be said about
the theory describing the effects of bodies steady levita-
tion observed in a quickly oscillating field. In addition
as it follows from the Earnshaw theorem, such effect
is unlikely to occur in static condition [Fradkov, 2007],
[Blekhman, 2004].

4 Some interdisciplinary problems

4.1 Vibrational displacement
By the effect of vibrational displacement we mean

the emergence of the “directional on the average”, as
a rule — slow, change (particularly of motion) at the
expense of the undirected on the average (as a rule —
fast, oscillatory) effects. Since much attention is at-
tracted to the velocity of slow change of state (i. e.
the velocity of vibrational displacement) it appears to
be reasonable in finding this component to pass from
the initial equations to those of OS. The problems as-
sociated with the theory of vibratory displacement are
likely to appear apart from mechanics in other sciences
such as chemistry, biology, biomechanics etc. A num-
ber of new problems in this field have been considered
lately [Blekhman, 2000], [Blekhman, 2004], articles in
[Blekhman, Sorokin, 2009b], [Blekhman, 2010].

5 Some fundamental equations
By taking into account oscillatory action in differen-

tial equations which describe some fundamental phe-
nomena, we can detect considerable change of the
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system behavior – this is reflected in corresponding
OS equations. Take for example a transformed ver-
sion of the well-known Lorenz’s equation system (see
[Neimark, Landa, 1992])

ξ̈ + (η − 1)ξ + ξ3 = −µξ̇,
(12)

η̇ = − µ

σ + 1

[
bη − (2σ − b)ξ2

]
+A cosωt,

where µ, σ and b are positive parameters, A and ω are
the amplitude and the frequency of action correspond-
ingly.
In this case we obtain the following OS equation for

the slow component B of the variable ξ:

B̈ + (
1

2

A2

ω4
− 1)B +B3(1 +

3

2

A2

ω6
) = −µḂ. (13)

Hence, one can see that as A >
√
2ω2 the equilib-

rium position B = 0 becomes stable and no self-
oscillations including chaotic ones will arise. The
equation (13) is obtained after the simplest introduc-
tion of oscillating action according to (10) and based
on approximate solution of the fast motion equations,
when ψ1 = AB sinωt/ω5, ψ2 = A sinωt/ω. (Sup-
posing ξ = B(t) + ψ1(ωt), η = ψ2(ωt)). Other ways
of introducing the disturbance and more accurate solu-
tion of the equations are certain to yield more complete
results.
The other example is the classic Lotka–Volterra sys-

tem “prey-predator” [Neimark, Landa, 1992]. With pe-
riodic action this system takes the form:

ṅ1 = n1(ε1 − γ1n2) +A sinωt

ṅ2 = −n2(ε2 − γ2n1) +B sin(ωt+ δ),
(14)

where n1and n2 denote animals population, substances
concentration and so on and ε1, ε2, γ1, γ2, A,B, δ
are positive constants. In the simplest approxima-
tion the solution of the fast motion equations ψ̇1 =
−A sinωt, ψ̇2 = B sin(ωt + δ) will yield the fol-
lowing OS equations:

Ṅ1 = N1(ε1 − γ1N2)− γ1a,

Ṅ2 = −N2(ε2 − γ2N1) + γ2a, (15)

(a = AB cos δ/ω2).

These equations are distinguished from the classic
ones by the presence of constant terms in their right

hand parts. This tends to change the behavior of the
phase trajectories of the system which becomes not
conservative any more. QuantitiesN1 andN2, depend-
ing on parameter a values, either approach some con-
stant values or depart from those; the latter case corre-
sponds to the “extinction” of populations. There exists
a significant distinction of OS equations from initial
ones in models of self-oscillatory chemical reactions
(see [Neimark, Landa, 1992]) as well as in Lancaster’s
war model. The behavior of corresponding systems is
to be changed under the influence of oscillatory action.
Wave equations are also subjected to such changes, the

alterations being not only quantitative but qualitative
too. If in the equation of string oscillation

m
∂2u

∂t2
= T

∂2u

∂x2
. (16)

the string tension changes according to the rule T =
T0(1+α sinωt), we obtain the following OS equation:

m
∂2U

∂t2
= T0

∂2U

∂x2
− (EY )v

∂4U

∂x4
, (17)

where

(EY )v =
1

2m
(T0α

/
ω)2

is bending rigidity acquired by the string in its slow
motion U = ⟨u⟩. To put it differently, the string ap-
pears to be transformed into a bar. Identical results can
be obtained in solution of other problems such as the
problem of Indian Magic Rope and the problem of pipe
stability with some pulsating liquid flowing through it
[Blekhman, 2000], [Blekhman, 2007] as well as the
problems described by Sine-Gordon non-linear wave
equations. Specification of above mentioned results
with accompanying reference list is given in [Shishk-
ina, et al, 2008].

6 Oscillators
Non-linear and parameterically excited oscillators

with single degree of freedom are widely used as
models of many oscillatory processes. A great num-
ber of studies accomplished mainly by digital simu-
lation technique have been devoted to investigation of
“controlling” influence on oscillators [Fradkov, 2007],
[Neimark, Landa, 1992]. In this paper this task is
treated by OS approach. Mathieu’s oscillator is de-
scribed by the equation:

mẍ+ (c0 + cv sinωt)x = 0, (18)

where m, c0 and cv are constants. When ω >> λ =√
c0/m, OS equation has the form:

ẍ+ (c0 + cv)x = 0, (19)
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where cv = c20
/
2ω2. Hence, equilibrium position x =

0 unstable if c0 < 0, c≈ = 0 becomes stable for X =
0, if cv > −c0. This explains in particular the effect
of stabilization an inverted pendulum with a vibrating
suspension axis [Blekhman, 2000; ?].
Fidlin’s oscillator [Blekhman, Sorokin, 2009a; ?] is

described by the following equation:

ẍ+ (β − aω cosωt)ẋ+ x = 0, (20)

where a ∼ O(1), β ∼ O(1), ω >> 1. Correspond-
ing OS equation takes the form:

Ẍ + βẊ + I20 (a)X = 0, (21)

where I0(a) is modified Bessel’s function. It is worth-
while to note that the strong oscillation of the damp-
ing coefficient in equation (20) leads to the essen-
tial change of the rigidity coefficient in equation (21).
Double-frequency excitation in Duffing oscillator leads
to the effect of conjugate resonances and bifurcations
[Blekhman, 2004]. For the oscillator with a positional
– viscous resistance (a0 + a1x + ...)ẋ the OS equa-
tion describes the phenomena of asynchronous excita-
tion and asynchronous depression of self-excited oscil-
lations as results of resistance characteristics transfor-
mation. This case includes Van-der-Pol’s oscillator as
well [Blekhman, 2000].
At first sight oscillation of an independent variable t

seems to be exotic one. Such oscillation implies transi-
tion from time t to a variable τ = t + α sinωt, where
α << t. For a linear oscillator ẍ + λ2x = 0 the OS
equation in corresponding approximation looks like:

d2X

dτ2
+

1

2
(αω)2

dX

dτ
+ λ2(1 + 2α2λ2)X = 0 (22)

i. e. time pulsation entails the appearance of dissipa-
tion!
It is to be noted that the employment of the pulsating

independent variable – called “true anomaly” is charac-
teristic for a number of problems in celestial mechan-
ics. As it was shown by V.S. Sorokin, the reverse tran-
sition to time t in the known Beletsky’s equation, de-
scribing the travel of a satellite with respect to the cen-
ter of mass [Beletsky, 1978], transforms this equation
into one devoid of the term depending on ẋ. The cor-
responding OS equation will be also in line with the
conservative system.

7 Conclusion
The above-cited examples taken from various sciences

provide evidences for consideration of the problems
concerning slow motions of dynamical systems under
high frequency oscillating actions within a new sepa-
rate interdisciplinary field of knowledge. This new area

of science may be called oscillatory strobodynamics (or
vibrational dynamics. The problems of the OS allow
to make use of a general mathematical approach and a
clear interpretation of results that seem to be paradoxi-
cal at first glance.
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