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Abstract
The present article is devoted to the problem of the

nonlinear technical systems, operating under proba-
bilistic uncertainty of the input signals and internal
parameters. Numerical statistical experiments in the
course of simulating such systems involve excessive
overhead costs, levelling of which allows to increase
significantly the precision of estimates of the research
system simulated characteristics.
The results presented in the paper can be used in solv-

ing problems of applied physics, as well as in the anal-
ysis and synthesis of control systems. In particular,
they can be used for planning and organizing numer-
ical study with limited computing resources, or in case
of excessive duration of a statistical experiment.
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1 Introduction
The method of statistical testing known as the Monte

Carlo method is often applied to study characteristics
of the complex stochastic systems. The system param-
eters under study are evaluated statistically, the key role
being played by their mathematical expected value and
deviation from the true value (accuracy) [Ross, 2012].
The required number of the experiments n needed to
obtain a sufficiently reliable result and the accuracy
of the numerical study ε have the inverse dependence
[Danilov, Ermakov, and Halton, 2000; Graham and Ta-

lay, 2013]:

n =
α2σ2

ε2
, (1)

where α is the value characterizing the confidence in-
terval, and σ2 is the variance of the sought value esti-
mate. Obviously, the simulation complexity is also af-
fected by the variance of the parameter being estimated
[Asmussen and Glynn, 2007; Law and Kelton, 2000].
Numerous methods are applied for the estimation vari-

ance reduction [McLeish, 2005]. Depending on the
purposes, they allow to achieve either reduction of the
statistical simulation complexity or increase of the pa-
rameters estimation accuracy. Among the well-known
methods are the following: Importance Sampling (IS)
[Kroese, Taimre, and Botev, 2011; Rubinstein and
Kroese, 2017], Stratified Sampling (SS) [Keramat and
Kielbasa, 1998; Marnay and Strauss, 1991], Multi-
ple Control Variates (MCV) [Glasserman, 2003; Glynn
and Szechtman, 2002; Nelson, 1990] and Common
Part Variates (CPV) [Emeljanov, Likholet, and Sharov,
2009; Podoplekin and Andriyevskiy, 2005], as a ana-
logue of the latter according to the paper [Vasiliev and
Sabinin, 1987].
The Importance Sampling method involves replacing

the original response function of the model under study
with a new one with the same mathematical expectation
[Rubinstein and Kroese, 2017]. To minimize the vari-
ance the density of the cumulative distribution function
of a new random variable is to be proportional to the
product of the state variable of the initial random vari-
able by the density of the random parameter variance
[Glasserman, 2003; Kroese, Taimre, and Botev, 2011].
On the other hand [Ermakov, 2009], the new model
construction in this case is a task comparable in com-
plexity to the original one.
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The Stratified Sampling is formed by splitting the in-
tervals of the accepted values of the components of
the random parameters vector V = [V1, V2, . . . , Vm]
into the separate layers. The statistical experiment is
carried out separately in each layer. When n is fixed
this approach in particular ensures the reduction of the
cumulative sampling variance [Rubinstein and Kroese,
2017], which in its turn provides the improved accuracy
of estimations. With an increasing number of the ran-
dom process parameters, as well as of layers for each
dimension, the solution of the problem of the multidi-
mensional hypercube optimal stratification turns out to
be a rather compute-intensive procedure. In order to
solve this problem, Latin Hypercube Sampling (LHS)
may be applied [Burhenne, Jacob, and Henze, 2011;
Owen, 1997; Veetil, Sylvester, and Blaauw, 2008].
The Common Part Variates and Multiple Control Vari-

ates methods appear to be the most flexible, in view of
their excellent combinability with the sampling meth-
ods and the use of the so-called simplified models con-
cept. Some papers introduce the term “metamodel” for
a simplified model [Porta Nova and Wilson, 1993]. A
simplified model with statistical characteristics similar
to those of the base model enables one to define more
exactly the results of the statistical experiment and to
adjust them. The simplification is achieved by choos-
ing a model which has a less complex structure and
requires fewer resources for conducting a single exper-
iment. Both methods assume different criteria for con-
structing simplified models. In the case of the Common
Part Variates method, a simplified model is to have a
geometric proximity with the base model, while in the
case of the Multiple Control Variates method the prox-
imity based on the strong correlation relationship [Nel-
son, 1990].
In this paper the application of the Multiple Con-

trol Variates method in combination with the unified
method of the system simplified model construction
proposed by the authors will be considered.

2 Mathematical Description of the Nonlinear Re-
search System

As the research system the normalized nonlinear
oscillating circuit model considered in the paper
[Nekrasov, 2017] will be used:

d2x(t)

dt2
= −x(t)− kx3(t) + f(t),

t > 0, x(0) = x0,
dx(0)

dt
= x1,

(2)

where k = const is the coefficient of nonlinearity, f(t)
is the function that determines the system stochastic
process. When solving Cauchy problem for the sys-
tem (2) will be considered the random process f(t) as

the following:

f(t) = βµ sin(ωt)(1− ω2 + kβ2µ2 sin2(ωt)). (3)

Here ω = 5π sec−1, β and µ – are random input sig-
nals, uniformly distributed along the interval (0; 4π).
Obviously, in this case the vector of random parame-
ters and input signals is given as the following: V =
[β, µ] ,m = 2. For the numerical solution of the differ-
ential equation (2) in the paper the Runge-Kutta fourth-
order method is used under the following initial condi-
tions: x0 = 0, x1 = βµω.

3 Problem Statement
When solving Cauchy problem for the nonlinear sys-

tem of type (2) a statistical experiment inevitably
appears to be obligatory in order to determine the
mathematical expectation of value x(t) with the pre-
defined precision ε. The application of stochastic
simulation method to estimate the desired parameter
with the required accuracy implies the iterative adjust-
ment [Glasserman, 2003; Ross, 2012; Rubinstein and
Kroese, 2017] of the experiments required number n in
the simulation process in accordance with (1).
As previously noted the application of the MCV

method oriented to minimize the variance of the re-
quired parameter implies constructing the simplified
model y(t). The application of this method deals with
the problem of developing criteria for the selection of
the effective approach to form a simplified model. A
large number of papers [Asmussen and Glynn, 2007;
Glasserman, 2003; Ross, 2012; Nelson, 1990], are
known to describe the criteria for forming the structure
of y(t) for the particular classes of the systems under
study. However the universal approach is known only
for various complexity simplified models in the poly-
nomial form [Emeljanov and Likholet, 2008].
The MCV method is characterized by the following

dependence of the statistical characteristics of the ini-
tial and simplified models:

E [X] ≈ E[X̃] + c̃
(
E[Ỹ ]− E[Y ]

)
, (4)

where c̃ = −cov
(
X̃, Ỹ

)
/Var

(
Ỹ
)

, X = x(t), Y =

y(t) and X̃ = x̃(t), Ỹ = ỹ(t) and x̃(t), ỹ(t) are sta-
tistical estimates of the characteristics of the exact val-
ues x(t), y(t) respectively. Here cov

(
X̃, Ỹ

)
is the

covariance [Bashkirtseva, 2016] between X̃ and Ỹ and
Var

(
Ỹ
)

is the variance of the Ỹ .

The universal approach to the construction of y(t)
[Emeljanov and Likholet, 2008] implies the search
for the polynomial with the minimum of the value
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−c̃σỹ/σx̃ of the following form:

y(t) = C0 +
m∑
i=1

CiVi +
m∑
j=1

m∑
l=1

Cjl+mVjVl. (5)

The set of polynomial coefficients denoted as C =
{C0, C1, . . .} is the set of parameters to be optimized
when forming the structure of universal simplified
model y(t). In case of nonlinear systems the authors
of the polynomial models in order to further improve
their productivity [Emeljanov and Likholet, 2008] also
developed an adaptive algorithm for stochastic simula-
tion, which implies, in particular, both the advantages
of MCV and SS and the formation of simplified mod-
els set Ŷ = {ŷ0(t), ŷ1(t), . . .} for each SS layer, where
∀ŷ(t) ∈ Ŷ is the polynomial simplified model, de-
veloped with the respect of the particular layer sam-
pling. Taking into account (5) as well as the possi-
bility to select the optimal position of the layer edges,
in case of the adaptive algorithm the maximum num-
ber of the parameters to be optimized is estimated as
λ = (2m+ |C|)

∣∣∣Ŷ ∣∣∣. Obviously, at larger λ the adap-
tive construction of the simplified models ŷ(t) appears
to be a very laborious method. This paper presents an
alternative approach of constructing universal simpli-
fied models which is to be applied as a part of MCV
and CPV methods and which assumes only one param-
eter to be optimized.

4 Simplified Models Construction Technique
According to [Ross, 2012] MCV implies the follow-

ing dependence:

Var
(
X̃ + c̃

(
Ỹ − E [Y ]

))
Var

(
X̃
) = 1− ρ̃2xy, (6)

where ρ̃xy =
cov

(
X̃, Ỹ

)
√
Var

(
X̃
)
Var

(
Ỹ
) = −c̃

σỹ

σx̃
.

The substitution of the expressions (6) and (4) into (1)
allows to get the estimate of the experiments required
number n for the MCV method:

n =
α2Var(X̃)

ε2
(
1− ρ̃2xy

)
. (7)

The statistical experiment with the iterative adjust-
ment n applying (7) allows to estimate E [X] with the
predefined precision ε.
The proposed method of the simplified model struc-

ture construction implies achieving a controlled corre-
lation coefficient ρ̃xy when the difference between x(t)

and y(t) is sufficient for practical application (7) and
(4). This requires obeying the following conditions:

1. organization of a statistical experiment in three
stages: initialization, post-initialization, iterative;

2. formation of the simplified model structure in the
form m-dimentional “heightmap”.

The initialization stage is characterized by the random
sample N0 ∈ Rm which has the size of n0 and on the
basis of which the “heightmap” is constructed. The
sample N0 is the base one for the simplified models
of the considered type. The second stage implies the
primary estimation of the desired statistical character-
istics of the original model in accordance with (4). The
final stage implies an iterative adjustment of the experi-
ments required number (7) and a repeated evaluation of
the characteristics. The experiment is terminated with
the convergence of the required number of experiments
n to the value of the ñ and with the achievement of the
required accuracy ε.
When constructing simplified model y(t) in the

form of the “heightmap” the base model x(t) is
considered as a function of the point defined at
m-dimensional Euclidean space that corresponds to
the y(V1, V2, . . . , Vm, t) dependency. Let ∃A =
(V A

1 , V A
2 , . . . , V A

m ), ∃B = (V B
1 , V B

2 , . . . , V B
m ) and

∃C = (V C
1 , V C

2 , . . . , V C
m ), moreover if ∀p, q ∈

{A,B,C} the following equation is correct:

Rpq =

√
(V q

1 − V p
1 )

2
+ . . .+ (V q

m − V p
m)

2
. (8)

Let A ∈ N0, B ∈ N0, C /∈ N0 and ∀D ∈ N0 :
RDC > RAC , RDC > RBC , then if RAC < RBC

and φ = RAC/RBC for simplified model y(t) of the
considered form the following equation is also correct:

y(C, t) =
y(A, t) + φy(B, t)

1 + φ
. (9)

With regard to (9) the task of using y(t) in the form
of “heightmap” for ∀C at the post-initialization and
iterative stages is reduced to the k-Nearest Neighbor
Search (k-NNS) problem in the m-dimensional Eu-
clidean space, which has an effective solution, for ex-
ample, with usage of the k-d trees [Bentley, 1975].
It should be separately noted that the only parameter,

the structure of the y(t) and ρ̃xy in this case depend on
is n0.

5 Simulation and Experimental Results
Let’s consider the results of the stochastic simulation

of the (2) with the presence of the random process (3) in
the nonlinear system under study. It also makes sense
to experimentally verify the relationship between the
parameters n0 and ρ̃xy .
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Figure 1. Original model x(β, µ, t) visualisation.

Figure 1 shows the base model x(β, µ, t) surface vi-
sualization where t = const. The model surface is
formed as a “heightmap” with the gradient color de-
scription of the function resulting value. Further on
this illustration will be allowed to assess visually the
geometric proximity of the base and simplified models.
The original presumption concerning the simplified

models built in accordance with (9), is based on an as-
sumption that geometrically similar models are highly
likely to have strongly prounounced correlative rela-
tionships.
Let’s consider the solution of the Cauchy problem for

the system (2) applying statistical simulation with the
estimation precision ε = 3 × 10−3. When comparing
the results of the Direct Monte Carlo Simulation and
the MCV in combination with the simplified models in
the form of the “heightmaps”, one can get convinced
of achieving the predefined precision, and also can es-
timate ñ for both experiments (values ñbase and ñMCV

respectively). In this case, the following evaluation of
the efficiency of the statistical simulation complexity
reduction with implementing the proposed approaches
can be applied:

η =

(
1− ñMCV

ñbase

)
· 100%. (10)

Figure 2 shows the dynamics of value η with different
values of n0 for adaptive simplified models in the form
of Ŷ and simplified models y(β, µ, t) in the form of
“heightmaps”.
The fluctuations on chart η for the simplified model
Ŷ indicate that in case of multiparametric optimization
the global extremum or the local global extremum are
hard to be achieved. The revision of the Ŷ parameters
optimization method in some cases may significantly

Figure 2. Simulation Complexity Reduction. MCV for simplified
model Ŷ (blue line), MCV for simplified model y(β, µ, t) (black
line).

improve the extreme points reachability. Nevertheless,
in view of the results presented in this paper this issue
has not been studied.
The surfaces obtained as the result of solving the

above formulated problem with the application of the
simplified model in the form of the “heightmap” are
shown in Figure 3. For the indicated values of n0

the following values of the correlation coefficient are
achieved: ρ̃xy = 0.58, ρ̃xy = 0.83 and ρ̃xy =
0.90 respectively. Obviously, with the increase of the
“heightmap” base sample size the visual (geometric)
proximity of the simplified and original models signif-
icantly increases. This circumstance can be used when
projecting the obtained results on the CPV method.
The dependence shown in Figure 4 demonstrates the

Figure 4. Correlation coefficient between the simplified model
y(β, µ, t) and x(β, µ, t).
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Figure 3. Visualization of the Simplified Model y(β, µ, t): n0 = 103 (left plot); n0 = 5×103 (central plot) andn0 = 104 (right plot).
For the indicated values of n0 the following values of the correlation coefficient are achieved: ρ̃xy = 0.58, ρ̃xy = 0.83 and ρ̃xy = 0.90
respectively.

ability to control characteristic ρ̃xy by determining the
optimal size of sample N0 when using simplified mod-
els in the form of “heightmaps” as a part of MCV. For
a simplified model of Ŷ form, the value ρ̃xy was not
estimated, since in accordance with the mathematical
apparatus of the adaptive method [Emeljanov and Lik-
holet, 2008] for ŷ(β, µ, t) the degree of correlation with
the original model is estimated solely within the con-
fines of a single SS layer and does not spread over the
entire range of the accepted values of the random vec-
tor V components.
The obtained results allows to state that the universal

approach for simplified model formation proposed in
this paper for the MCV and CPV methods is not infe-
rior in efficiency to the approach proposed in the pa-
per [Emeljanov and Likholet, 2008]. Along with this,
it allows to significantly simplify the method of con-
structing the simplified model structure preserving its
key statistical characteristics.

6 Conclusions
The article demonstrates the universal simplified sys-

tem construction approach to be used as a part of such
methods of stochastic simulation complexity reduction
as CPV and MCV. The presented results are compa-
rable in efficiency with the results obtained when the
adaptive approach is applied. On the other hand, the
key feature of the construction method for a simplified
model in the form of a “heightmap” is its single param-
eter to be optimized. In case of the adaptive approach
the number of the parameters to be optimized appears
to be considerably larger. This may adversely affect the
simplified model construction complexity.
As mentioned earlier, the proposed approach can be

used to solve the problems of applied physics and the
nonlinear stochastic control theory in conditions of lim-
ited computing resources. In turn, the fundamental de-
pendence of the simplified model on the single param-
eter to be optimized makes the practical application of

the considered proposals quite attractive.
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