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Abstract
Creation of initial distribution of macroparticles in

phase space in the case of electron or ion sources mod-
eling is an important aspect. In this work we will dis-
cuss the two main approaches to particles creation ran-
dom and quiet start. In the case of random distribution,
we need less number of macroparticles but it can reduce
solution accuracy due to a growth of numerical noises.
Numerical noises in solution obtained some particles
method manifested primarily in fluctuation the space-
charge density distribution. We introduce the criteria
for measurement this fluctuation based on a compari-
son the density distribution with the some “etalon” so-
lution with minimized fluctuations. An approach based
on the application of different noise filters is used for
suppress the fluctuation. The results of measurements
the solution accuracy in the case of planar diode are
presented.
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1 Introduction
Numerical simulations today have become one of the

most effective tools for studying plasma [Zavadskiy
and Kiktenko, 2014; Aminov, Ovsyannikov, 2015] and
particle flows dynamics in the emitting devices such
as particle accelerators [Andrianov, Edamenko, 2014;
Kozynchenko, 2014; Skudnova and Altsybeyev, 2015],
electron and ion sources [Altsybeyev et al., 2014a; Alt-
sybeyev et al., 2014b]. The basis of most used algo-
rithms for numerical studies in this field is various par-
ticle methods [Hockney, 1988], in which particle flows
are simulated as a set of a large number of model par-
ticles. A significant drawback of particle-based meth-
ods is the occurrence of non-physical numerical noise
[Mesyats, 2014], resulting in a distortion of the solu-
tion. The origins of noise are various and there is no

general approach to solving this problem now. The
simplest way to reduce the noise is to increase the
number of model particles but it is often impossible
due to the limitation of computer resources. To re-
duce the noise, the scheme of space charge assigning
and forces interpolation are modified [Mesyats, 2009],
optimal time step and cell size are selected, different
noise filters are applied [Jolliet, Bottino and Angelino,
2007]. Creation of initial distribution of macroparticles
in phase space is also an important aspect. Two funda-
mental approaches are common: the random start and
the quiet start. The idea of random start is the random
initial distribution of macroparticles in phase space.
Using this scheme we need less number of macropar-
ticles, but this leads to the growth of numerical noises.
The quiet start is an attempt to reduce the noise and
indetermination of random starts. But in some cases,
application of quiet start is too complicated due to a
growth of the required number of model particles, es-
pecially during the discretization by the set of phase
space dimensions [Lapenta]. Also using of regularly
located particles can lead to correlation among the par-
ticles that have no equivalence in reality.
In this paper iterative particle tracking and Particle-

In-Cell methods are used. We assume that solution ob-
tained by iterative particle tracking method with quiet
start is more accurately than the solution obtained using
Particle-In-Cell with random start. So, we introduce
the criteria for measurement numerical noises based on
a comparison the density distribution with solution ob-
tained using iterative particle tracking method. In fol-
low we try to analyze effect of noise reduction methods
on solution accuracy using introduced approach.

2 Governing Equations
If we assume that the process at hand is time-

independent, we can use the electrostatic approxima-
tion. In this case the electric field is irrotational and the
space charge distribution is time-independent. Let us
consider the computational domain Ω = Ω ∪ Γ, there
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Γ = Γ1 ∪ Γ2 is the computational domain boundary.
This assumption allows us to use the Poisson equation
to calculate the electric field potential U and electric
fields E.

∆U(r) = −ρ(r)

ε
, if r ∈ Ω

E(r) = −grad U(r),

U(r) = g(r), if r ∈ Γ1

∂U(r)

∂n
= 0, if r ∈ Γ2.

(1)

Here r is the space phase coordinates vector, ρ(r) is the
space charge density distribution, g(r) is some function
that describes electrodes potentials, is the electric per-
mittivity of the domain material, n is a normal vector to
the Γ2 boundary. We will use the following relativistic
motion equations for macroparticles in particle-mesh
methods:

dpi

dτ
=

qiE(ri)

m0c2
,

dri
dτ

=
pi

γi
,

ri(0) ∈ Γem,

pi(0) = p0
i .

(2)

Here i = 1...N are the macroparticles labels of the par-
ticle flow in which physical particles have rest mass m0

and charge qi, γi are the macroparticles Lorentz fac-
tors, c is the light velocity, τ = ct, pi = viγi/c are the
macroparticles momentums (vi are the macroparticles
velocities), ri are the macroparticles positions, Γem is
the emitting surface, p0

i is initial macroparticles mo-
mentums.
The current density distribution j(r) satisfy the conti-

nuity equation

div j(r) = 0,

j(r) = jem(r), if r ∈ Γem.
(3)

In the case of the space-charge limited emission current
density is determined by Child law for a vacuum planar
diode [Child, 1911]

jem =
4

9
ε0

√
2
e

m

U3/2

d2
. (4)

Here U is cathode-anode voltage, ε0 is permittivity, d
is the distance between cathode and anode, e and m
charge and mass of electron. Also it should be noted
that current density can be obtained more precisely
using different approaches [Altsybeyev, 2016; Altsy-
beyev, 2015].
We should determine the stationary solutions of

the equations (1)-(3): the self-consistent field and
macroparticles traces.

3 Simulations Tools
In this work we will use DAISI (Design of Accel-

erators, optImizations and SImulations) code for all
calculations. DAISI code initially was developed for
numerical simulations of electron and ion sources us-
ing particle-in-cell method at the Saint-Petersburg State
University [Altsybeyev et al., 2014b; Altsybeyev and
Ponomarev, 2015; Altsybeyev, 2016].

4 Particle-In-Cell Method
Particle-In-Cell (PIC) simulations are a widely used

tool to study plasma and particle flows dynamics in
the emitting devices such as particle accelerators, elec-
tron and ion sources. In order to numerically solve
the Vlasov-Poisson equations particle flows are repre-
sented by a set of large number of model particles.In
addition to macroparticles data method works with in-
formation about the electromagnetic field and current
and charge densities specified on a computational Eu-
ler grid. The particles do not interact directly but only
through the grid values.
Classical scheme of PIC method consists of the four

stages:
Particle initialization and emission. To create the

initial distribution of macroparticles positions and ve-
locities random and ”quiet” start are used [Mudiganti,
2006].
Space charge assigning and force interpolation. To

calculate the charge deposited by the macroparticles
and force interpolation we use Cloud-In-Cell (CIC)
scheme.
Calculate electric field. Poisson equation is solved

numerically using the finite-difference method (FDM)
with the five-point star stencil [Altsybeyev and Pono-
marev, 2015]. The electric field is obtained by numer-
ical differentiation of the electrostatic potential. The
forces acting on the particles are computed from the
electric fields evaluated at the particle position.
Particle pushing. After calculating the forces acting

on each particle we can update the positions and veloc-
ities. For the integration of particles motion equations
(2) we use the second-order Leap-Frog mover. The
Leap-Frog method is economic and good conserves en-
ergy on long trajectories.

5 Particle Tracking Method
An iterative particle tracking method can be used

to simulate steady-state of the particle flows. The
main idea is based on iterative corrections of particle
paths inside a problem space. The required number
of macroparticles is significantly less, making itera-
tive method attractive to study the steady-states of the
beams.
To avoid iteration divergences [Xavier, Motta, 2010],

space charge density at the nth iteration is averaged as

ρnh = (1− ω)ρn−1
h + ωρnh (5)
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where ω represents the under-relaxation factor. De-
creasing relaxation factor ω helps to improve method
convergence, but at the same time it increases the re-
quired time for the simulation.
As a convergence criteria of the iterations we use the

following condition

max
s=1..N

∣∣∣∣ρns − ρn−1
s

ρn−1
s

∣∣∣∣ < ε (6)

Here ρns is a space charge density on a nth iteration in
the sth computational mesh node, ε is the tolerance.

6 Noise Reducing Methods
In order to improve solution accuracy different charge

density smoothing methods were examined.

Linear smoothing filtering. The simplest way to
cutoff numerical noise is linear smoothing filters.
Linear filters work by a convolution with a moving
window called a kernel. In this paper the Gaussian
kernel with different sizes is used.

Frequency domain filtering. Numerical noise can
be suppressed by frequency domain filtering [Sydora,
1999] in three steps:

1. Transformation of space charge density distribu-
tion into frequency domain via FFT.

2. Apply the filter low-pass window function.
3. Transformation back to time domain via inverse

FFT.

Smoothing cubic spline. The smoothing spline s is
constructed for the specified smoothing parameter p.
Parameter p is defined between 0 and 1, p = 0 produces
a least-squares straight-line fit to the data, while p = 1
produces a cubic spline interpolant.

7 Numerical Experiments
We consider the planar diode in two-dimensional

Cartesian coordinates. The geometry and parameters of
the diode is presented in Fig. 1 and in Table 1. All sim-
ulations were performed on the uniform computational
mesh 128 × 128, hx = hy ≈ 0.0008. The number of
macroparticles traces is 500, the integration timestep
is chosen so that the macroparticles pass no more than
half of mesh cell per one step.

Table 1: Planar diode parameters.
Anode-cathode distance, m d = 0.1

Length, m L = 0.1
Emitter length, m Lem = 0.02

Anode voltage, V Ua = 100 000
Current density, A/m2 Jem = −7368
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Figure 1: Simulations model of the planar diode.

7.1 Quiet start
The electron traces obtained by iterative particle track-

ing method presented in Fig. 2. Comparison of the
space charge density distributions obtained by the PIC
method and the iterative particle tracking method plot-
ted in Fig. 3. We can conclude that results obtained
by PIC and iterative solvers with quiet start accurately
consistent.
Solution obtained by the iterative particle tracking

method with quiet start will be considered as etalon so-
lution. This solution will be used to estimate the effi-
ciency of the discussed noise reducing methods.
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Figure 2: The electron traces obtained by iterative
particle tracking method.

7.2 Random start
In the case of iterative solver with random start con-

vergence was not achieved. Smoothing of the space
charge density also did not help to achieve conver-
gence. Convergence criterion plotted in Fig. 4.
However, smoothing of the space charge distribution

by cubic smoothing splines s = 0.5 in the Particle-
In-Cell simulation helps to suppress oscillations intro-
duced by random start and increases the accuracy of
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Figure 3: Comparison of the space charge density
distributions obtained by the PIC method and the

iterative particle tracking method in case of quiet start.
Black dashed line is etalon solution.

simulations. The deviation of the space charge density
distribution from etalon solution plotted in Fig. 5.
Three different smoothing methods were considered

in this work: linear convolution filter with Gaussian
kernel, Fourier filter with Gaussian window and cu-
bic smoothing splines. Comparison of the smoothing
methods efficiency presented in Fig. 6.
Influence of smoothing methods on RMS beam emit-

tance was observed. The arithmetic definition of a nor-
malized beam emittance is

ϵ = 4

√
x2 · p2x − (xpx)2 (7)

where

x2 =
1

N

N∑
i=1

x2
i ,

p2x =
1

N

N∑
i=1

p2xi
,

xpx =
1

N

N∑
i=1

xipxi .

Relative normalized RMS beam emittance in case of
random start with different smoothing methods is plot-
ted in Fig. 7. Etalon emittance was obtained by itera-
tive particle tracking method with quiet start. It should
be noted that smoothing increases value of RMS emit-
tance, despite it improves simulation accuracy.
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Figure 4: Divergence of the iterative particle tracking
method with the random start. Smoothing of the space

charge density also did not help to achieve
convergence.
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Figure 5: The deviation of the space charge density
distribution from etalon solution

in the case of the Particle-In-Cell method with
cubic smoothing splines s = 0.5 and without.
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Figure 6: Comparison of the smoothing methods
efficiency. Average deviations of the space charge

density distribution from etalon solution are presented.
s - smoothing parameter of cubic splines,

n - convolution kernel size,
σ - parameter of Gaussian window function.
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Figure 7: Relative RMS emittance

8 Conclusion
Using a random initial distribution of macroparticles

with iterative particle tracking method leads to di-
vergence of the method caused by large oscillations
in the space charge distribution. Smoothing meth-
ods also did not help to achieve convergence. But in
case of Particle-In-Cell simulations with random ini-
tial macroparticles distribution smoothing of the space
charge distribution helps to suppress oscillations intro-
duced by random start and increases the accuracy of
simulations. Different smoothing algorithms were ex-
amined and a comparison of their efficiency was pro-
duced.
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