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Abstract
In this paper we study the emergence and stability

of autoresonance (AR) in the nonlinear Klein-Gordon
chain consisting of identical linearly coupled Duffing
oscillators. The chain is excited by an external peri-
odic force with a slowly varying frequency applied to
one of the oscillators. Explicit asymptotic equations
describing the averaged amplitudes and phases of oscil-
lations are derived. These equations demonstrate that,
in contrast to the chains with linear attachments, the
nonlinear chain can be entirely captured into resonance.
As shown in this paper, AR in the entire chain gives
birth to the asymptotic equipartition of energy amongst
the oscillators, which is manifested as the convergence
of the amplitudes of oscillations to a monotonically
increasing mean value equal for all oscillators. The
thresholds of the structural and excitation parameters,
which allow the emergence of AR in the entire chain,
are determined. The derived analytic results are in good
agreement with numerical simulation.
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1 Introduction
In this work we investigate the emergence of high-

energy autoresonant (AR) oscillations in the Klein-
Gordon chain of finite length consisting of n identi-
cal linearly coupled Duffing oscillators. The chain is
excited by a harmonic force with a slowly varying fre-
quency applied at an edge of the chain.
An idea of AR, or “resonance under the action of a

force produced by the system’s itself” was first sug-
gested in [Andronov, Vitt and Khaikin, 1966]. Feed-
back control schemes building on this idea and using
self-sustained oscillations with predefined energy as a
working process are widely used in engineering, see,
e.g., [Astashev and Babitsky, 2007]. Note that feed-
back does not need an additional source of energy.

However, its design and tuning may be expensive and
cumbersome in practical situations, especially in multi-
dimensional structures. A large class of systems can
avoid feedback, still producing the required state with
the help of time-variant feed-forward frequency con-
trol, which employs an intrinsic property of a nonlin-
ear oscillator to change both its amplitude and natural
frequency when the driving frequency changes. The
ability of a nonlinear oscillator to remain captured into
resonance due to variance of its structural or/and ex-
citation parameters is termed autoresonance (AR). AR
leads to persistently growing mean energy of oscilla-
tions, and thus, this process may be employed to attain
the required energy level.
After first studies for the purposes of particle accel-

eration [Veksler, 1944; McMillan, 1945; Livingston
1954], a large number of theoretical approaches, ex-
periments and applications of AR and similar effects in
different fields of natural science, from plasmas to non-
linear optics and hydrodynamics, have been reported in
literature (see, e.g., [Blekhman, 2012; Dauxois at al.,
2004; May and Kühn, 2011; Milant’ev, 2013; Vazquez,
MacKay, and Zorzano, 2003] and references therein).
The analysis, first concentrated on the study of AR in
a single nonlinear oscillator, was then extended to os-
cillator arrays with two- or three-degree-of-freedom.
Examples in this category are excitations of phase-
locked plasma waves with laser beams [Chapman et.
al., 2010], particle transport in a weak external field
with slowly changing frequency [Galow et.al., 2013],
isotope separation processes [Rax, Robiche, and Fisch,
2007], control of nanoparticles [Klughertz, Hervieux,
and Manfredi, 2014], etc. It is important to note
that multi-dimensional nonlinear non-stationary sys-
tems seldom yield explicit analytical solutions needed
for understanding and modelling the transition phe-
nomena, so that the above-mentioned studies have not
suggested any general conclusions concerning the oc-
currence of AR in multidimensional systems.
In most of previous studies, AR in the forced os-

cillator was considered as an effective tool for excit-
ing high-energy oscillations in the entire array. How-
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ever, recent results [Kovaleva, 2014a,b; 2016a; Koval-
eva and Manevitch, 2016] have shown that this princi-
ple is not universal because the behavior of each ele-
ment in the chain may drastically differ from the dy-
namics of a single oscillator. This effect was recently
analyzed for oscillator arrays, which comprise a chain
of time-invariant linear oscillators weakly coupled to
a nonlinear actuator [Kovaleva, 2016a; Kovaleva and
Manevitch, 2016]. It was shown that an external peri-
odic force with slowly-varying frequency gives rise to
AR only in the excited nonlinear oscillator (the actu-
ator), while the response of the linear attachment re-
mains bounded.

This work demonstrates that, in contrast to the above-
mentioned examples, all oscillators in the nonlinear
chain can be captured into resonance. The difference in
the dynamics of the two types of systems is closely con-
nected with their resonance properties. High-energy
resonant oscillations in a linear time-invariant oscilla-
tor can be generated by an external force whose fre-
quency is equal or close to the natural frequency of
the oscillator; deviations of the forcing frequency re-
sult in escape from resonance. On the contrary, the
natural frequency of a nonlinear oscillator changes as
its amplitude changes, and the oscillator may remain in
resonance with its drive if the driving frequency varies
slowly in time to be consistent with the slowly chang-
ing frequency of the oscillator.

It was shown in recent papers that the emergence and
stability of AR in a single Duffing oscillator [Kovaleva,
Manevitch, 2013a,b] as well as in two coupled Duff-
ing oscillators [Kovaleva, 2014b] directly depends on
the forcing and coupling parameters. It was demon-
strated both theoretically and numerically that AR can
occur only if the considered parameters exceed a cer-
tain threshold. Our consideration of a multi-particle
chain is also focused on the study of the threshold phe-
nomena, with the purpose to identify a set of parame-
ters allowing stable AR in the entire chain.

The analysis of AR in this paper is motivated by
the methods and the results, earlier developed for the
study of resonance in a Klein-Gordon chain subjected
to periodic forcing with constant frequency [Kovaleva,
2016b]. Section 2 introduces the equations of the chain
dynamics. The small parameter of the system is de-
fined as the dimensionless coefficient of linear cou-
pling between the oscillators. Averaging of the di-
mensionless equations gives birth to the equations for
the slow envelopes and the phases of resonant oscilla-
tions. In Section 3 we analytically calculate the steady-
states values of the amplitudes and the phases of AR
oscillations. Both analytical results and numerical sim-
ulations demonstrate that AR entails the asymptotic
equipartition of energy with the amplitudes converging
to the slowly growing quasi-steady mean values equal
for all oscillators. The critical thresholds for the struc-
tural and excitation parameters are derived in Section
4. Numerical examples are discussed in Section 5.

2 The Model

The dynamics of the chain is governed by the nonlin-
ear Klein-Gordon equations:

d2ur
dt2

+ ω2ur + γu3 + κ[ηr,r+1(ur − ur+1) +

ηr,r−1(ur − ur−1)] = Ar sin θ,

dθ

dt
= ω + ζ(t), ζ(t) = k1 + k2t. (1)

Here and below ur denotes the displacement of the r-
th oscillator; the frequency ω = (c/m)1/2, with m and
c being the mass and the coefficient of linear stiffness
of each oscillator, respectively; γ > 0 is the cubic stiff-
ness coefficient; the parameter κ denotes the stiffness
of linear coupling between the oscillators. The first
oscillator is subjected to periodic forcing with ampli-
tude A and time-dependent frequency; the parameters
k1 > 0 and k2 > 0 denote the initial constant detuning
and the detuning rate, respectively. The coefficients ηr,l
= {1, l ∈ [1, n]; 0, l = 0, l = n + 1} depict unilateral
coupling of the edge oscillators (r = 1, r = n) with the
adjacent elements. Since the attachment is not directly
driven by an external force, we let Ar = 0 if r ≥ 2.
Note that Eqs. (1) depict a general oscillator model,

which corresponds to a wide variety of physical ob-
jects. The physical interpretation of the coefficients in
Eqs. (1) depends on the model under consideration. For
examples, intensively studied micro-electromechanical
systems (MEMS) are modelled as micro-cantilever
arrays composed of the nonlinear elastic cantilever
beams. Approximate models of MEMS are depicted
by the nonlinear Klein–Gordon equations with coef-
ficients expressed through the parameters of the can-
tilevers, see, e.g., [Balachandran, Perkins, and Fitzger-
ald, 2015].
For the study of the transient motion, it is convenient

to separate the dimensionless equations of the slow dy-
namics, which have a simpler structure and involve a
lesser number of independent parameters than the orig-
inal equations (1). First, we introduce the dimension-
less small parameter as ε = k1/ω << 1. Then, we
define the recalled parameters and the new dimension-
less time variables as follows:

γ = 8εαω2̄, Ar = 2εFrω
2̄, κ = 2εkω2̄,

k2 = 2ε2βω2̄; (2)
τ0 = ωt, τ = ετ0,

where F1 = F > 0 but Fr = 0 at r ≥ 2. Inserting (2)

into (1), we then have

d2ur
dτ20

+ ur + 8εαu3 + 2εk[ηr,r+1(ur − ur+1) +

ηr,r−1(ur − ur−1)] = 2εFr sin θ,

dθ

dτ0
= 1 + ζ0(τ); ζ0(τ) = 1 + βτ.(3)
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The array is assumed to be initially at rest, i.e. θ =
0, ur = 0, dur

dτ0
= 0 at τ0 = 0. We recall that zero

initial conditions identify the so-called Limiting Phase
Trajectory (LPT) corresponding to maximum possible
energy transfer from a source of energy to a receiver
[Manevitch, Kovaleva, and Shepelev, 2011].
Next, we reduce Eqs. (3) to the so-called standard

form [Sanders, Verhulst and Murdock, 2007]. To
this end, we introduce the dimensionless complex-
conjugate vector envelopes Ψ and Ψ∗ with components
Ψr and Ψ∗

r (r = 1, ..., n), respectively, and related di-
mensionless parameters by the following formulas:

Ψr = Λ−1(vr + iur)e
−iθ,

Ψ∗
r = Λ−1(vr − iur)e

iθ, (4)
Λ = (1/3α)1/2, fr = Fr/Λ, µ = k/Λ.

It follows from (4) that the real-valued dimensionless
amplitudes and the phases of oscillations are defined

as
∼
ar = |Ψr| and

∼
∆r = argΨr, respectively. Substi-

tuting (4) into (3), we obtain the following (still exact)
equations for the envelopes Ψr:

dΨr

dτ0
= −εi[(ζ0(τ)− |Ψr|2)Ψr −

µηr,r+1(Ψr −Ψr+1)− (5)
µηr,r−1(Ψr −Ψr−1) + fr +Gr

with initial conditions Ψr(0) = 0 (r = 1, . . . , n). The
coefficientsGr include fast harmonics with coefficients
depending on Ψ and Ψ∗ but explicit expressions of
these coefficients are insignificant for further analysis.
Finally, the multiple scales expansion is introduced:

Ψr(τ0, ε) = ψr(τ) + εψ(1)
r (τ0, τ) +O(ε2), (6)

where the leading-order term ψr(τ) depict the slow
component of the complex envelope but additional
terms define small fast deviations near ψr(τ). The
equations for the slow components ψr(τ) can be
obtained by straightforward averaging of Eqs. (5)
[Sanders, Verhulst, and Murdock, 2007]. Using the
standard averaging procedure, we obtain the following
equations for the slow components of the complex en-
velopes:

dψr

dτ
= −i[(ζ0(τ)−

|ψr|2)ψr − µηr,r+1(ψr − ψr+1)− (7)
−µηr,r−1(ψr − ψr−1) + fr]

with initial conditions ψr(0) = 0. Note that the aver-
aged equations include three independent coefficients
instead of six parameters in Eqs. (1).

The change of variables ψr = are
i∆r yields the fol-

lowing equations for the real-valued dimensionless am-
plitudes ar and the phases ∆r:

dar
dτ

= µ[ηr,r+1ar+1 sin(∆r+1 −∆r) +(8)

+ηr,r−1ar−1 sin(∆r−1 −∆r)]− fr sin∆r,

ar
d∆r

dτ
= µ[ηr,r+1(ar − ar+1 cos(∆r+1 −∆r)) +

+ηr,r−1(ar − ar−1 cos(∆r−1 −∆r))]−
(ζ0(τ)− a2r)ar − fr cos∆r

with initial amplitudes ar(0) = 0 and indefinite ini-
tial phases ∆r(0), r = 1, . . . , n. These initial condi-
tions make the system singular at τ = 0. To overcome
these difficulties, one needs to solve the non-singular
complex-valued Eqs. (7) and then find the real-valued
amplitudes from Eqs. (8). The accuracy of asymptotic
approximations for systems with slowly varying pa-
rameters has been discussed, e.g., in [Arnold, Kozlov,
and Neishtadt, 2006]. Recall that the errors of approx-
imation |∼ar(τ, ε) − ar(τ)| → 0 as ε → 0 in the time
interval of interest, which is, at least, of order O(1/β).

3 Quasi-Steady States
Given that β << 1, the quasi-steady solutions can be

calculated by the following formulas:

Pr =
dar
dτ

= 0;Qr =
d∆r

dτ
= 0, r = 1, . . . , n. (9)

The last condition Pn = 0 implies sin(
−
∆n−

−
∆n−1) =

0. Inserting this equality into the condition Pn−1 = 0,

we obtain sin(
−
∆n−1 −

−
∆n−2) = 0. Repeating this

procedure for each equation Pr = 0, we find that

sin(
−
∆r −

−
∆r−1) = 0, r > 1. Finally, the equa-

tion P1 = 0 yields sin
−
∆1 = 0. This means that

either
−
∆r = 0 (mod 2π) or

−
∆r = π (mod 2π),

r = 1, . . . , n. As in [Kovaleva and Manevitch, 2013a;

Kovaleva, 2014b], one can find that the phases
−
∆r = 0

correspond to stable oscillations but the phases
−
∆r = π

are unstable for all r ≥ 1. Under these conditions, the
second group of Eqs. (9) takes the form

µ(1− a2/a1)− ζ0(τ) + a21 − f = 0, (10)
µ[2− (ar−1 + ar+1)/ar]−−ζ0(τ) + a2r = 0,

r ∈ [2, n],

µ(1− an−1/an)− ζ0(τ) + a2n = 0.

The following solutions of Eqs. (10)

−
a1(τ) ≈

√
ζ0(τ) + [f/2ζ0(τ)] +O(µf/ζ0(τ)),

−
ar(τ) ≈

√
ζ0(τ) +O(µr−1f/ζr0 (τ), r ≥ 2.(11)
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describe the maximal quasi-steady amplitudes corre-
sponding to AR in the entire chain. Note that the slowly
increasing functions

−
ar(τ) (r = 1, . . . , n) can be inter-

preted as the backbone curves.
It follows from (11) that the higher-order corrections

may be ignored; furthermore,

−
ar(τ) →

−
a(τ) =

√
ζ0(τ)as τ → ∞ (12)

for all r ≥ 1.. Formulas (11), (12) clearly indicate that
the energy initially placed in the first oscillator tends to
equipartition amongst all oscillators with amplitudes of
oscillations

−
ar(τ) → −

a(τ) as τ → ∞, r = 1, . . . , n.
In Section 5, this conclusion is illustrated by the results
of numerical simulations for the chains with different
number of particles.

4 Parametric Thresholds
Note that solutions (11) formally exist for arbitrary

values of structural and excitation parameters. How-
ever, AR in the entire chain is physically realizable
when the amplitude of excitation is large enough to
generate AR in the actuator and the coupling strength is
sufficient to maintain large oscillations of all attached
oscillators. In this section we establish the paramet-
ric thresholds, which allow the emergence of AR in
the entire chain. We demonstrate that, in contrast to
the array with a linear attachment [Kovaleva, 2016a],
a proper choice of the structural and excitation param-
eters guarantees the emergence of AR in the nonlinear
chain. In order to simplify an analytical framework and
elucidate the physical interpretation of the results, we
assume that f ∼ o(1), µ ∼ o(1) but β << 1. These
assumptions agree with the earlier obtained results for
a pair of coupled Duffing oscillators [Kovaleva, 2014b]
as well as with the results of numerical simulations for
multi-particle chains presented in Sec. 5 below.
As remarked above, AR in the forced oscillator repre-

sents the necessary condition for the emergence of res-
onance in the passive attachment. This means that the
first parametric boundary can be found assuming small
oscillations of the attachment. Under this assumption,
the equations of the excited oscillator are reduced to the
form

da1
dτ

= −f sin∆, (13)

a1
d∆1

dτ
= −(ζ0(τ)− µ)a1 + a31 − f cos∆1.

It was shown [Kovaleva and Manevich, 2013a] that in
the adiabatic system (β << 1) the amplitude of the
forced oscillator within the first cycle of oscillations is
close to the amplitude of an identical oscillator excited
by the same force with constant frequency (β = 0).
Thus, the first step towards analyzing AR is the study
of the transition from small to large oscillations in the

time-invariant analog of (13) described by the follow-
ing equations:

da1
dτ

= −f sin∆, (14)

a1
d∆1

dτ
= −(1− µ)a1 + a31 − f cos∆1

with initial conditions a1(0) = 0,∆1(0) = −π/2 cor-
responding to the LPTs of the oscillator (14). It was
proved [Manevitch, Kovaleva, and Shepelev, 2011] that
the parametric thresholds that determine the boundaries
between small and large oscillations are expressed as

(a)f1µ = f1
√
1− µ3, (b)f2µ = f2

√
1− µ3, (15)

where f1 =
√

2/27, f2 = 2/
√
27. At f < f1µ,

the LPT represents an outer boundary for a set of
closed trajectories encircling the stable center on the
axis ∆1 = −π, while at f > f1µ the LPT depicts an
outer boundary for the trajectories encircling the stable
center on the axis ∆1 = 0. It was proved [Manevitch,
Kovaleva, and Shepelev, 2011] that the transition from
small (non-resonant) to large (resonant) oscillations for
the oscillator being initially at rest occurs due to the
loss of stability of the LPT of small oscillations at
f = f1µ. At f = f2µ, the stable center at ∆1 = −π
vanishes, and only a single stable center corresponding
to nonlinear resonance remains on the axis ∆1 = 0.
We note that, if the actuator is captured into resonance,

resonant oscillations in the attachment can occur if the
coupling stiffness is strong enough to transfer the re-
quired amount of energy. This implies that the coupling
parameter µ cannot be negligibly small. It was shown
that in the time-invariant analogue of (8) the admissible
parameter µ = 0.189 for all attached oscillators from
r = 2 to r = n − 1 but µ = 0.25 for r = 1 and
r = n [Kovaleva, 2016b]. This implies that in the adia-
batic case an admissible parametric domain for a multi-
particle chain is determined by the same conditions as
for a pair of oscillators [Kovaleva, 2014b], namely,

f > f1µ =
√
2(1− µ)3/27;µ > µcr = 0.25. (16)

Parametric thresholds (16) are shown in Fig. 1.
It follows from (16) that if the parameters f, µ lie

within the domain D0, then the entire chain is captured
into resonance; oscillators with the parameters from the
domain D1 below f1µ execute small quasi-linear oscil-
lations; if the parameters belong to the domain D, then
the dynamics of the chain should be investigated sepa-
rately (an example is discussed in Sec. 5). It is impor-
tant to note that these conditions have been obtained
approximately for the time-invariant system. However,
numerical examples in Section 5 prove that slow varia-
tions of the forcing frequency weakly affect the condi-
tions of the emergence of AR in a multi-particle chain.
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Figure 1. Parametric thresholds (16).

It is important to note that the emergence of AR also
depends on the critical detuning rate β∗, at which the
transition from bounded to unbounded oscillations oc-
curs. It was shown [Kovaleva and Manevitch 2013a]
that AR can occur if β < β∗ << 1. Note that the an-
alytical approximation of the critical rate β∗ is a rather
cumbersome task [Kovaleva and Manevitch 2013a]. In
this paper the derivation of the threshold parameter β∗

is omitted but the numerical results presented in Sec. 5
have been obtained for the oscillators subjected to forc-
ing with adiabatically increasing frequency satisfying
the required condition.

5 Numerical Results
In this section we illustrate the effect of structural and

excitation parameters on the formation of stable AR in
the chain. It was shown [Kovaleva, 2016b] that a de-
crease of the coupling stiffness µ results in escape from
resonance for the chain excited by an external force
with constant frequency. Figure 2 confirms a similar
effect for the 4-particle chain excited by an external
force with slowly-varying frequency. The excitations
with amplitude f = 0.4 and detuning rate β = 0.01
is considered. Figures 2(a) and 2(b) show that in the
chain with the stiffness parameter µ = 0.2 < µcr the
energy is localized in the excited oscillator but the at-
tachment exhibits small non-resonant oscillations. Fur-
ther increase of the coefficient µ enhances the coupling
response thus resulting in the occurrence of AR in the
entire chain (Fig. 2(c)). Note that both sets of the pa-
rameters (f = 0.4, µ = 0.2 and f = 0.4, µ = 0.23)
belong to the domainD (Fig. 1) and the behavior of the
chain cannot be predicted beforehand but an approach
of the parameter µ < µcr to µcr increases the probabil-
ity of the emergence of AR.
Figure 3 illustrates the dynamics of the 4-particle

chain with parameters µ = 0.25, β = 0.005 but with
different amplitudes of excitation.
It follows from (16) that f1µ = 0.176 at µ = 0.25.

Figure 3(a) depicts small oscillations of the chain at
f = 0.17 < f1µ. An increase of the forcing ampli-
tude entails energy localization in the excited oscillator

Figure 2. Amplitudes of oscillations in the 4-particle chain: (a) AR
in the actuator and (b) small oscillations of the attached oscillators
at µ = 0.2; (b) AR in all oscillators at µ = 0.23. The solid
and dashed bold lines depict backbones (11) for the actuator and the
attached oscillators, respectively.

Figure 3. Amplitudes of oscillations in the 4-particle chain: (a)
small oscillations at f = 0.17 < f1µ; (b) AR at f = 0.22 >
f1µ; (c) energy localization in the excited oscillator and (d) small
oscillations of the attachment at f = 0.21 > f1µ. The solid
and dashed bold lines depict backbones (11) for the actuator and all
attached oscillators, respectively.

against small oscillations of the attachment at f = 0.21
(Figs. 3(c), 3(d)) and capture into resonance of the en-
tire chain at f = 0.22 (Fig. 3(b)). The initial segments
of chaotic motion and transitions to regular oscillations
are excluded from consideration
The results of numerical simulations for the eight-

particle chain subjected to forcing with parameters f =
0.25, β = 0.001 are shown in Figs. 4, 5. For brevity,
only the dynamics of the actuator and the last (eight)
oscillator is illustrated.
Figure 4 indicates that an increase of the coupling

strength µ leads to the transformations of small oscil-
lations (Fig. 4(a)) into large oscillations of the actuator
(Fig. 4(b)) and then into AR in the entire chain (Fig.
4(c))
Figure 5 illustrates the transitions from small oscilla-

tions to AR with an increase of the forcing amplitude f
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Figure 4. Amplitudes a1(τ) and a8(τ) in the 8-particle chain
subjected to forcing with parameters f = 0.25, β = 0.001: (a)
small oscillations of the entire chain at µ = 0.2169; (b) energy
localization in the excited oscillator against small oscillations of the
attachment at µ = 0.21695; (c) AR in the entire chain at µ =
0.217. The solid and dashed bold lines in plot (c) depict backbones
(11) for the actuator and the attached oscillator, respectively.

in the chain with parameters µ = 0.25, β = 0.001.

Figure 5. The dependence of the response amplitudes a1(τ) and
a8(τ) from the forcing amplitude f in the 8-particle chain with
parameters µ = 0.25, β = 0.001: (a) small oscillations of the
entire chain at f = 0.12; (b) AR in the entire chain at f =
0.18. The solid and dashed bold lines depict backbones (11) for
the actuator and the attached oscillators, respectively.

6 Conclusions
In this work, the emergence of autoresonance (AR) in

the Klein-Gordon chain of finite length has been stud-
ied. The chain is excited by periodic forcing with a
slowly varying frequency applied at one edge of the
chain. This work has shown that, in contrast to the
earlier investigated arrays with a linear attachment, the
nonlinear chain can be entirely captured into resonance.
Furthermore, in the main approximations the ampli-
tudes of AR for all oscillators converge to the equal
monotonically growing quasi-steady amplitudes. The
threshold values of the structural and excitation param-
eters, which allow the emergence of AR in the en-
tire chain, are determined. Close agreement between
the analytical and numerical results has been demon-
strated.
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