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Abstract 
The paper deals with the decentralized model 

predictive controller design. The unconstrained 

Generalized Predictive Control (GPC) design 

approach is considered to design local controllers 

within the Equivalent subsystems methodology. 

According to ESM, the original multivariable plant is 

diagonalized by generating so called equivalent 

subsystems, for which local controllers are tuned 

independently. Resulting local controllers constitute 

the decentralized controller and are implemented on 

the real plant. Plant-wide closed-loop stability and 

performance under the decentralized controller are 

guaranteed if local controllers provide stability and 

required performance of equivalent subsystems.  

 The proposed approach has been verified on a case 

study - decentralized GPC design for a two-input two-

output laboratory plant.  
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1 Introduction 

 Complex systems with multiple inputs and multiple 

outputs (MIMO) are usually controlled using multi-

loop or decentralized controllers. Compared to 

centralized control, decentralized control is 

characterized by several important benefits such as 

hardware simplicity, operation simplicity as well as 

design simplicity and reliability improvement; due to 

them, decentralized control design techniques still 

remain popular among control strategies.  

The Equivalent Subsystems Method (ESM) 

[Kozáková, et al., 2009; Rosinová and Kozáková, 

2012] is a Nyquist based frequency domain technique 

for decentralized controller design. According to it, 

interactions are taken into account through a chosen 

characteristic locus of the matrix of interactions used 

to modify frequency responses of decoupled 

subsystems; these modified frequency responses are 

called equivalent subsystems. Local controllers are 

designed for individual equivalent subsystems 

independently using any single-input single-output 

(SISO) method, frequency-domain methods are 

preferred (Bode design, Neymark D-partition) and the 

recently developed Sine wave method [Bucz et al., 

2012]. It has been proved [Kozáková et al., 2009; 

Rosinová and Kozáková, 2012] that if closed-loop 

stability of individual equivalent subsystems under the 

respective local controllers is guaranteed then the full 

closed-loop system is stable as well. 

Implementation of the ESM for the decentralized 

controller (DC) design with local GPC controllers as 

proposed in this paper provides new perspectives to 

further development of the ESM-based approach. 

Generalized Predictive Control e.g. [Camacho and 

Bordons, 2004; Rossiter, 2004] is one of the most 

popular and successfully implemented Model 

Predictive Control (MPC) algorithms.  

There are many papers on decentralized MPC design 

and implementation. In [Richards and How, 2004] a 

decentralized MPC algorithm is presented for systems 

consisting of multiple subsystems with independent 

dynamics and disturbances but with coupled 

constraints. A plug-and-play MPC based on linear 

programming is proposed in [Riverso et al., 2013]. An 

extension of the GPC algorithm to a multivariable 

case by designing several SISO controllers and 

compensation for interactions is presented in [Linkens 

and Mahfouf, 1992], in [Vesely and Osusky, 2013] a 

frequency domain robust model predictive controller 

with hard input constraints is addressed. The paper by 

[Shah and Engell, 2010] presents a systematic 

approach that relates MPC tuning to linear control 

theory; in particular a systematic tuning of the 

prediction horizon and the cost function weights are 

provided to achieve desired closed-loop pole and zero 

locations for the unconstrained case. Results presented 

in this paper can be extended for the MIMO case and 

be applied in the decentralized GPC design proposed 

in this paper as well. 

In this paper, the GPC algorithm is applied within the 

ESM framework. Closed-loop stability analysis is 

based on the transformation of the GPC controller into 

the polynomial RST structure [Landau, 1998], which 



 

 

also useful for implementation of  local unconstrained 

GPC’s.  

The paper is organized as follows: Section 2 

presents problem formulation and theoretical 

background for the decentralized control design 

technique developed in Section 3. In Section 4, 

theoretical and experimental results illustrating 

effectiveness of the proposed approach are provided. 

Conclusions are drawn at the end of the paper.  

   

2 Problem Formulation and Preliminaries  
Consider a complex MIMO plant in the standard 

feedback loop (Fig. 1) consisting of the plant transfer 

function matrix G(s) ∈ R
mxm

, and a decentralized 

controller R(s) ∈ Rmxm
, where w, u, y, d, e are vectors 

of reference, control, output, disturbance and control 

error of compatible dimensions.  

 

 

Figure 1. Stadnard feedback configuration 

 

 The plant transfer function matrix G(s) can be 

decomposed according to Fig. 2 
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(1) 

 

where Gd(s) = diag{Gii(s)}mxm, detGd(s) ≠ 0 is the 

transfer function matrix of decoupled subsystems and  

)()()( sGsGsG dm  matrix of interactions between 

them.  

 

Figure 2. Standard feedback configuration with a 

decentralized controller 

 

Denote the closed-loop characteristic polynomial 

(CLCP)  

)](det[)(det sQIsF 
            

(2) 
 

where )()()( sRsGsQ   is the loop transfer matrix.
  

According to the Generalized Nyquist stability 

criterion the closed-loop system in Fig. 1 is stable if 

and only if for all s ∈ D
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where nq is the number of open-loop unstable poles of 

Q(s), D is the standard Nyquist D-contour in the 

complex plane, )](det,0[ sFN  is the number of 

anticlockwise encirclements of (0,0i) by detF(s); qi(s), 

i = 1,…,m is the set of m eigenfunctions of Q(s) 

defined as 
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The plant (1) is to be controlled using a 

decentralized (diagonal) controller (DC) 
 

 
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to guarantee closed-loop stability as well as a required 

plant-wide performance. The DC will be implemented 

as an unconstrained decentralized MPC within the 

framework of the ESM revisited in the next section. 

 

2.1 Equivalent Subsystems Method 

  The Equivalent Subsystems Method is a Nyquist-

based decentralized controller design technique for 

stability and guaranteed plant-wide performance, 

applicable for continuous- and discrete-time plants 

described by a transfer function matrix. [Rosinová and 

Kozáková, 2012].  

The method is based upon the condition (3) and 

considers the diagonal controller (5) and the split 

system (1) in which the matrix of interactions has 

been replaced in the sense of the Hamilton-Cayley 

theorem by a diagonal matrix   
 

mmk IsgsP  )()(
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where gk(s) is either of the m eigenfunctions of Gm(s) 

defined according to (4). The resulting equivalent 

system  
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is a diagonal matrix of m equivalent subsystems 
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generated as follows 
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If transfer functions of decoupled subsystems  

misGii ,..,1),(   are viewed as eigenfunctions of 

)(sGd , equivalent subsystems generated according to 

(8) can be denoted as „equivalent eigenfunctions“ of 

G(s), and related with corresponding “equivalent 

loci”. Conditions for closed-loop stability under a DC 

are formulated in the next theorem [Rosinová and 

Kozáková, 2012]. 
 

Theorem 1 (Stability under DC) 

The closed-loop in Fig. 1 comprising the plant (1) 

and a decentralized controller (5) is stable if and only 

if there exists mmk IsgsP  )()( such that 

1) }...,,1{0)]()(det[ mksGIsg mk  ; 

2)  closed-loop characteristic polynomials (9) of all 

equivalent subsystems (8) are stable 
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Theorem 1 results from the equivalence between 

closed-loop characteristic polynomials of the original 

MIMO system (CLCP) and the diagonal equivalent 

system (CLCP
eq

), both under a decentralized 

controller  
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As CLCP
eq

(s) is a diagonal matrix of independent 

equivalent closed-loop polynomials  
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then 
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and closed-loop stability is guaranteed if 
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The Equivalent Subsystems Method directly results 

from Theorem 1; it enables to design the decentralized 

controller as a collection of local controllers designed 

independently for individual equivalent subsystems. 

Local controllers independently tuned for stability and 

specified feasible performance of equivalent 

subsystems constitute the resulting decentralized 

controller guaranteeing stability and the specified 

performance plant-wide. 

If a discrete-time DC controller is to be designed, 

discrete-time version of ESM is applied. First, the 

continuous-time plant is discretized using an 

appropriate sampling period T; given the discrete-time 

plant transfer function )(zG  where sTez  , its 

frequency domain properties can be studied by 

plotting all frequency response characteristics of 

)( TjeG   by analogy with the continuous-time case.  

Besides choosing the sampling period T properly with 

respect to the plant dynamics it is necessary to keep in 

mind that a discrete frequency response is periodic 

with respect to the sampling frequency Ts /2   

and thus can be represented only for frequencies up to 

half of the sampling frequency, i.e.  2/;0 s ; 

higher frequencies would be “wrapped” to some other 

frequency in the range. A proper choice of sampling 

period is crucial for achievable bandwidth and 

feasibility of the required phase margin [Lewis, 1992].  

Actually, the ESM is a controller design framework 

within which local controllers are tuned for stability 

and specified feasible performance of each equivalent 

subsystem independently, and then implemented to 

real subsystems.  

2.2 ESM-Based Decentralized Controller Design  

 The proposed design procedure has the following      

steps: 

1. Discretization of the continuous-time plant G(s) 

using an appropriately chosen sampling period T, 

specification of the sampling frequency 

Ts /2  and of the feasible frequency 

range  2/;0 s . 

2. Partition of the discrete-time transfer function 

matrix G(z) into the diagonal and off-diagonal parts 

Gd(z) and Gm(z), respectively, calculation and 

plotting of characteristic loci gi(z), i = 1,…,m of 

Gm(z) for Tiez  , <0, s/2>. 

3. Choice of gk(z) for fixed k {1,…m}, generating 

and plotting discrete frequency responses of 

independent equivalent subsystems. 

4. Design and implementation of local controllers 

Ri(s), i = 1,…,m for all m equivalent subsystems.  
 

Any SISO design is applicable yet due to the nature 

of equivalent subsystems, frequency-domain designs 

are preferred e.g. the Neymark D-partition method 

[Kozáková, Veselý and Osuský, 2009], standard Bode 

design [Rosinová and Kozáková, 2012], Quantitative 

Feedback Theory (QFT) design, Sine-wave method 

[Bucz et al., 2012] etc.  

In the sequel, a procedure to design a decentralized 

MPC controller is developed. Local unconstrained 

MPC controllers are designed for equivalent 

subsystems and implemented on real subsystems to 

guarantee stability and plant-wide performance. In 

particular, the Generalized Predictive Control 

algorithm is considered since it is based on input-

output models and most of the other MPC approaches 

are relatively easily derivable by its minor 

modifications [Shah and Engell, 2010]. The 

unconstrained optimization scheme is considered to be 

able to perform stability analysis. 

 

2.3 Model Predictive Controller Design 

 In this chapter, a brief introduction to the main 

principles of MPC is recalled. Consider the plant 

described by the CARIMA model [Camacho and 

Bordons, 2004] in the following  form: 
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)z(C 1 is the noise filter polynomial, u(t), y(t) are the 

plant input and output, respectively, e(t) is a zero 

mean white noise, and Δ=1z
1

. For simplicity, 

consider that C(z
1

) = 1.  

To develop a prediction model, (14) can be rewritten 

as follows [Camacho and Bordons, 2004]: 
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where Â(z
1

) = ΔA(z
1

) = 1 + A1z
1

 +…+Ana+1z
(na+1)

.  

Since in (16) the control move Δu(t) is considered, to 

obtain the plant input it is necessary to introduce an 

integrator  
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Based on (16) the prediction model can be written in 

the following compact matrix/vector form 
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From (18), ỹs(t) is expressed as follows: 
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The cost function to be minimized is in the form: 
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Πy, Πu are weighting matrices, Ny, Nu, Nu ≤ Ny  are the 

prediction and control horizons, respectively. 

Substituting (22) into (24) the cost function can be 

expressed after some manipulations as follows 
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where ρ contains terms which do not depend upon 

Δũs(t) and hence can be ignored.  If no constraints are 

considered, the solution has analytical form found 

from the condition 
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The resulting GPC control law is defined by the first 

element of Δũs(t) [Rossiter, 2004]: 
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and e1
T
 = [I, 0,…,0].  

 

 In the unconstrained case when the control law and 

the controlled plant are linear, it is possible to derive 

the closed-loop characteristic equation and find its 

poles, and possibly to examine various frequency 

domain characteristics. The polynomial representation 

of the controller is used according to Fig. 3 where the 

predictive controller is described in the RST form 

[Landau, 1998]. 

  

 

Figure 3. Feedback loop with the R-S-T controller 

 

Digital filters R and S are designed to achieve the 

desired performance, and T is designed afterwards to 

achieve the desired tracking performance. Using (28) 

we can formulate the closed-loop system represented 

in the pole-placement structure [Camacho and 

Bordons, 2004]: 
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Now, consider the CARIMA plant model (16) in the 

following form: 
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Substituting (30) into (31) the closed-loop is obtained 

in the form: 
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The output of the closed-loop system is then  

 

)(
)()()()(

)()(

)(
)()()()(

)()(
)(

11111

11

11111

111

te
zzSzBzAzR

zRzT

tw
zzSzBzAzR

zzTzB
ty





















    

(33) 

 

The closed-loop characteristic polynomial is: 
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Choosing T(z
1

) = 1 the resulting expressions for the 

polynomials R(z
1

)and S(z
1

) are obtained 
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where ki are elements of the first row of 

(Λ
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Λ+ΠyI)

1
Λ

T
, Ii represents rows of Λ
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 and Fi 

represent rows Ω
T
. 

 

3 Decentralized GPC controller design  

This section presents main result of the paper - 

namely the decentralized GPC design implemented 

within the ESM according to the design procedure 

given in subsection 2.2. In particular, Step 4 (Design 

and implementation of local controllers) of the design 

procedure is explained next. 
After completing steps 1-3 of the design procedure, 

frequency responses of individual equivalent 

subsystems are available; their discrete-time 

input/output transfer functions have to be identified to 

be able to perform local GPC designs according to 

subsection 2.3.  

The resulting decentralized GPC consists of local 

independently tuned GPC’s of equivalent subsystems. 

According to Theorem 1, stability of individual 

equivalent feedback loops under the local GPC’s 

guarantees plant wide stability. In the unconstrained 

case, stability of equivalent feedback loops is verified 

using the RST representation of individual local 

GPC’s.  

In case of decentralized GPC design, Step 4 of the 

ESM-based design procedure can be summarized as 

follows: 

a) Identification of equivalent subsystems models 

based on their frequency responses. 

b) Design and tuning of local GPC controllers for 

all m equivalent subsystems.  

c) Verification of stability and performance of 

individual feedback loops of equivalent 

subsystems under local GPC’s in the R-S-T 

form. 

d) Implementation of the decentralized GPC on the 

real plant 

The design procedure is illustrated on a case study. 

 

4 Case Study 
 

4.1. Plant description and modelling 

  A two input - two output (TITO) plant is considered, 

consisting of two interconnected cooperating DC 

motors (Fig. 4, Fig. 5). The plant inputs are armature 

voltages U1, U2, measured outputs are speeds of 

individual motors 1,   converted into voltage.  

 

 

Figure 4. Laboratory plant – a two DC motor system 

 

Each DC motor has its own adjustable load (0-100%). 

Interconnection of the DC motors brings interactions 

into the MIMO plant. Input and output signals are 

measured using the data acquisition card Advantech 

PCI 1711. Mathematical model of the plant was 

identified experimentally from step responses 

measured in the operating point specified by U1 = U2 = 

3.5V, and the loads UL1 = 4V, UL2 = 3V.  

 



 

 

 
 

Figure 5. Block scheme of two interconnected DC 

motors 

 

The discrete-time I/O model of the plant was 

identified in the following form: 
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4.2 Decentralized GPC Design 

 To generate equivalent subsystems, characteristic 

loci g1(z) and g2(z) of interaction transfer function 

matrix Gm(z) have been calculated; g1(z) was chosen to 

generate equivalent subsystems according to (8). 

Equivalent subsystems given by their frequency 

responses had to be identified to obtain discrete-time 

transfer functions.  

 Best fit model for both equivalent subsystems was 

the fourth-order Output Error (OE) structure 

polynomial model found using the Matlab System 

Identification Tool IDENT: 
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Bode diagrams of generated equivalent subsystems 

and their OE polynomial models are compared in Fig. 

6 and Fig. 7. Local MPC controllers were designed 

using the MPC technique described in subsection 2.3. 

Following design parameters were chosen: prediction 

horizon Ny = 6, control horizon Nu = 6, weights Πy1, 

Πy2 = {(0.57, 1.58), (0.85, 3.50)} and the sampling 

period T = 0.1s.  

Parameters of the decentralized predictive controller 

in the R-S-T form are summarized in Table 1. 

 

 
Figure 6. Bode plots of the equivalent subsystem  
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Figure 7. Bode plots of the equivalent subsystem and 
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Table 1. Controllers Parameters  

Ri 

Parameters 

R(z
1

) S(z
1

) T(z
1

) 

R11 

1  0.9992z1 

 0.0007846 z2 

3.477  11.33z1 + 14.15z2 

7.993z3 + 1.718z4 
1 

R22 
1  0.9991z1 

 0.0008891 z2 

2.638  8.405z1 + 10.32z2 

 5.754z3  1.222z4  
1 

 

 

 



 

 

4.3 Experimental Results 

 Experimental results on the real plant under the 

designed decentralized controller are shown in Fig. 8 

and Fig. 9. 

 

 

Figure 8. Time responses of the real plant output y1 

and control input u1 for different values of Πy1, Πy2 

 

 

Figure 9. Time responses of the real plant output y2 

and control input u2 for different values Πy1, Πy2 

 

From the closed-loop characteristic polynomials of 

individual equivalent subsystems and of the full 

system under the decentralized controller obtained 

according to (34) stability was verified.  

Maximum moduli of discrete closed-loop poles of 

the full system and the individual equivalent 

subsystems, respectively, are: 

For the weights Πy1 = 0.57, Πy2 = 1.58: 

98610.p
max

  

988201 .p
max

  

987202 .p
max

    

For the weights Πy1 = 0.85, Πy2 = 3.50: 

98610.p
max

  

988601 .p
max

  

988602 .p
max

    

Obtained theoretical and experimental results prove 

that the local GPC controllers independently designed 

for each equivalent subsystem which constitute the 

resulting decentralized controller guarantee the closed-

loop plant-wide stability. 

 

5 Conclusion 

  In this paper a novel approach to the decentralized 

GPC controller design within the ESM design 

framework has been proposed. The main advantage of 

this approach is a diagonalization of the original plant 

by generating a diagonal matrix of equivalent 

subsystems. Thus, local predictive controllers of 

individual equivalent subsystems can be designed and 

tuned independently; stability of equivalent closed-

loops guarantees plant wide stability. Important points 

in the design procedure are model identification from 

frequency responses of equivalent subsystems, and 

stability analysis based on polynomial control 

structure of the unconstrained GPC control algorithm 

(RST form). The proposed decentralized GPC design 

approach was verified in a real-world laboratory plant. 

Presented theoretical and experimental results have 

proven effectiveness of the proposed control design 

strategy. 

The future research will deal with guaranteeing 

desired plant-wide performance by systematic tuning 

of the GPC design parameters (prediction horizons, 

weights), as well as with the problem of guaranteeing 

stability under the decentralized GPC with constraints. 
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