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Abstract— One of the fundamental limitations to high bit
rate, long distance, telecommunication in optical fibers is
Polarization Mode Dispersion (PMD). Here we show how one
can adapt bang-bang control techniques for suppressing the
decoherence of polarization states in optical fibers by carry-
ing out controlled rotations of polarization at predetermined
locations along the fiber. We propose an experimental proof-of-
principle demonstration of the idea based on the propagation
of polarization qubits in a ring-cavity containing birefringent
crystals and wave-plates.

I. INTRODUCTION

Dynamical decoupling offers a versatile control toolbox
for quantum dynamical engineering in both high-resolution
spectroscopy [1] and quantum information science [2]. De-
coupling schemes operate by subjecting the target system
to a series of open-loop control transformations, in such
a way that the net evolution is coherently modified to a
desired one [3]. This avoids auxiliary memory and measure-
ment resources, while additionally enabling straightforward
integration with other passive [4] or active [5] quantum
control techniques. Applications of decoupling range from
the removal of undesired couplings in interacting quantum
subsystems to active decoherence control and symmetrization
in open quantum systems [6], [7].

Up to now almost all the experimental demonstration of
decoupling techniques have been carried out within nuclear
magnetic resonance (NMR) systems (see e.g. [7]). However
propagation of photonic qubits along optical fibers could
represent an important field of application of dynamical
decoupling schemes for preventing decoherence. In such a
case “bang-bang” techniques [7] have to be implemented “in
space”, rather than in time, i.e., along the fiber length [8]. In
fact, polarization effects in single-mode fibers are a common
source of problems both in classical optical communication
schemes and in quantum ones [9]. Birefringence is the
presence of two different phase velocities for two orthogonal
polarization states. It is caused by asymmetries in the fiber
geometry and in the residual stress distribution inside and
around the core.

Polarization Mode Dispersion (PMD) arises because the
residual birefringence changes randomly along the fiber, that
is, both the orientation of its fast and slow axes and the
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value of the difference between the two indexes of refraction
randomly vary along the fiber. This results in random mode
coupling as the light propagates. Because of this statistical
process, the effects of PMD such as pulse spreading increase
as the square root of the propagation distance [10], [11], [12],
[13], [14]. This statistical process makes it extremely difficult
to correct the effects of PMD after the light has propagated
through a long length of fiber. PMD is a fundamental
limitation on high speed, high bit rate communication in fiber
systems because it distorts the shape of light pulses, and in
particular induces pulse spreading. Hence much effort has
gone into reducing PMD in optical fibers, see [15], [16] for
reviews.

Two main methods have been devised to reduce PMD
in optical fibers. The first is to minimize asymmetries in
the index profile and stress profile of the fiber. To this end
the manufacturing process has been steadily improved. The
second method is to spin the fiber during the manufacturing
process as described in [17], [18]. Our basic idea is different
and amounts to introduce controlled polarization rotations at
predetermined locations along the fiber in such a way that the
effects of PMD are reduced [19]. As in bang-bang schemes,
after several such controlled polarization rotations, the state
of polarization of the light has been oriented along many
different directions on the Bloch sphere in such a way that
the effects of the fiber birefringence averages out. We expect
that once that the main decoherence sources affecting a single
photon polarization qubit have been characterized, one could
appropriately engineer the fiber by applying a stress pattern
on the fiber implementing a periodical decoupling sequence
on the polarization qubit. In order to do that we shall first
provide a proof-of-principle demonstration of the efficiency
of bang-bang decoupling by modeling the propagation along
a fiber as a sequence of birefringent crystals, placed inside
an optical ring cavity. Due to birefringence, the polarization
and the frequency degree of freedom of a single photon are
coupled and the latter degree of freedom induces phase deco-
herence once is traced over. This scheme has been considered
and experimentally discussed in [20], where the simplest case
of multiple passes through a single birefringent crystal has
been considered. Here the sequence of differently oriented
crystals will provide a more general and complete model
of the decoherence affecting the polarization qubit. The se-
quence of bang-bang operations will be realized by inserting
appropriate waveplates between the crystals and we shall see
that, by decreasing the length of the crystals the fidelity of
the transmitted qubit increases, approaching unity when the
length scale of birefringent effects, which is proportional to



the length of the crystal, becomes smaller. Here we shall
focus on the simple case in which the birefringent crystals are
identically oriented. This case reproduces all the features of
polarization maintaining (PM) fibers, which are characterized
by a fixed orientation of the fast and slow axes. In these
fibers PMD is enhanced through an asymmetric cladding, and
polarization decoherence is dramatically present. We show
here that bang-bang decoupling can significantly suppress
decoherence already in this case and preserve the photon
polarization for a very large number of passes through the
ring cavity, which means very long propagation distances
along a PM fiber.

II. THE PROPOSED EXPERIMENT

The aim of our work is the experimental realization of an
active fast manipulation of photon polarization states devoted
to the reduction of polarization decoherence which is due to
the coupling with the frequency degree of freedom. As a
first test we consider a table-top realization based on a ring
cavity configuration, for which we derive some analytical
results which will be then verified by numerical simulations.
The ring cavity scheme is depicted in Fig. 1. A pulsed diode
laser (LD) with wavelength λ0 = 806 nm is injected in the
cavity through the output mirror with a reflectivity of ∼95%,
which also allows the partial retrieval of the pulses after
each round trip, whose duration will be around 10 ns. The
cavity has been designed such that it is possible to insert
in one arm a number of birefringent crystals (BCs), which
simulate decoherence in a controlled way, and an opportune
sequence of wave plates representing the unitary operations
of the bang-bang control. We have already implemented a
polarization entangled photon source to directly test the setup
at the single photon level [21].

Fig. 1. Schematics of the cavity for the storage and manipulation of
photons. The decoherence induced in one arm either by birefringent crystals
or PM optical fiber (BCs), is expected to be recovered by the use of the
Bang-Bang Control through the unitary operations XZXZ. LD is a diode
laser; APD is a avalanche-photodiode; BS is a beam-splitter with 95%
reflectivity.

III. THE MODEL

Let’s consider a birefringent crystal of length L with fast
and slow index of refraction nf and ns, respectively. Polar-
ization input state parallel to the slow (fast) axis acquires
a phase φs = ωnsL/c (φf = ωnfL/c). The action of the
birefringent crystal on a polarization input state in the frame
parallel to the crystal axes is given by the unitary operator

P(φ) .=
[

eiφs 0
0 eiφf

]
= eiΦ e−i φ

2 σZ , (1)

with φ = φf − φs and Φ = (φf + φs)/2. In a reference
frame in which the crystal axes are rotated at an angle θ, the
transformation of eq. (1) generalizes to

U(θ, φ) = R(θ)P(φ)R†(θ) , (2)

with
R(θ) .=

[
cos θ − sin θ
sin θ cos θ

]
= e−iθσY . (3)

The unitary operator in eq. (2) can be written in terms of the
2x2 Pauli matrices σ = (σX , σY , σZ) as

U(θ, φ) .= eiΦei φ
2 s0·σ, (4)

i.e., a rotation of an angle φ around the axes defined by the
vector

s0 = [− sin(2θ), 0, cos(2θ)] . (5)

A. Without bang-bang control

During the propagation through a sequence of 4n crystals,
with different lengths and different orientations of the axes,
an input polarization state is transformed by the unitary
operator

U4n =
4n∏

j=1

U(θj , φj) , (6)

which represents a model for a generic single mode (SM)
optical-fiber. On the contrary, all axes aligned along the same
direction, forming an angle θ with the reference frame, can
be considered as a model for a PM optical-fiber.

We focus on the analysis of the latter with a fixed crystal
length. In this case φ is the same for each crystal but depends
on the frequency; therefore

U4n(θ, φ) = [U(θ, φ)]4n = U(θ, 4nφ) (7)
= R(θ)P(4nφ)R†(θ) ,

where n is the number of cavity round-trips. We consider
an electromagnetic input field with an amplitude spectrum
A(ω), normalized such that

∫
dω|A(ω)|2 = 1, and a fre-

quency independent polarization state |p〉in. The total input
state of the input field is therefore

|ψ〉in =
∫

dωA(ω) |ω〉 ⊗ |p〉in . (8)

The output polarization state is given by the reduced density
matrix obtained by tracing out the frequency degree of
freedom

ρ̂NoBB
out =

∫
dω|A(ω)|2 U4n(θ, φ)ρ̂inU†4n(θ, φ) , (9)



with

ρ̂in = |p〉〈p| = 1
2

[I+ pin · σ] , (10)

where pin is the Stokes (or equivalently, Bloch) vector of
the input polarization state. Note that the unitary operator
U4n(θ, φ) depends on the frequency through the parameter
φ = φ(ω) = ω∆nL/c, with ∆n = nf − ns, and the
reduced density matrix can be derived as an average over
the frequency spectrum, A(ω) [20]

ρ̂NoBB
out =

1
2

[
I+ pNoBB

out · σ]
(11)

The output Stokes vector pNoBB
out is related to the input

one, pin, by the averaged Muller matrix, 〈V̂NoBB [θ, φ(ω)]〉,
through the expression

pNoBB
out = 〈V̂NoBB [θ, φ(ω)]〉pin

=
∫

dω|A(ω)|2 V̂NoBB [θ, φ(ω)]pin . (12)

The polarization output state is in general a mixed state,
whose purity depends on the crystal parameters, as well on
the polarization input state. Only for a monochromatic input,
i.e., an infinitely narrow pulse spectrum, the state remains
pure. An explicit expression for the Muller matrix in terms
of the angle 4nφ and the vector s0 given in eq. (5) can be
found according to the relation Vσ = U†σU:

V̂NoBB(θ, φ) = RY (2θ)RZ(4nφ)R†
Y (2θ) , (13)

where Rk(α) represents an O(3) rotation of an angle α along
the k-axis.

B. With bang-bang control

To overcome the reduction of purity of the state due to
the crystals birefringence and the nonzero bandwidth of the
photon pulse we consider now a bang-bang control. This
control is realized including opportune rotations between the
crystals (see Fig. 1). It has been shown [3], [19] that a bang-
bang control on the polarization of the field can be realized
by the two non-commuting rotations Z .= σZ and X .= σX

between adjacent crystals. The evolution of the polarization
state after n cavity round trips in the presence of the bang-
bang control is therefore

UBB(θ, φ) = [ZU(θ, φ)XU(θ, φ)]2n . (14)

This control sequence cancels decoherence at first order in
φ ∼ ∆nL, but it is possible to devise more involved control
sequences able to cancel decoherence at higher orders [3].
Using eq. (14), it is possible to write for the reduced density
matrix of the output polarization an expression analogous to
that of eq. (11)

ρ̂BB
out =

1
2

[
I+ pBB

out · σ
]

, (15)

with
pBB

out = 〈V̂BB [θ, φ(ω)]〉pin , (16)

and 〈V̂BB [θ, φ(ω)]〉 the average Muller matrix in the pres-
ence of bang-bang. In fact it is possible to derive the
expression

[ZU(θ, φ)XU(θ, φ)]2 = e4iΦeiα(θ,φ)s(θ,φ)·σ , (17)

with the angle α(θ, φ) satisfying the relation

sin
[
α(θ, φ)

2

]
= sin2

(
φ

2

)
sin(4θ) , (18)

and the 3D vector s(θ, φ) given by

s(θ, φ) =




0
cos2(φ/2)+cos(4θ) sin2(φ/2)√

1−[sin2(φ/2) sin(4θ)]2

− sin φ sin(2θ)√
1−[sin2(φ/2) sin(4θ)]2


 . (19)

The Muller matrix in the bang-bang case V̂BB [θ, φ] assumes
a form similar to that without bang-bang of eq. (13), that is,

V̂BB(θ, φ) = RX(2θBB)RZ [2nα(θ, φ)]R†
X(2θBB) ,

(20)
where the angle θBB is defined by the relation

tan(2θBB) =
cos2(φ/2) + cos(4θ) sin2(φ/2)

sin φ sin(2θ)
. (21)

A first important consequence of these results is that the
bang-bang control allows a complete elimination of decoher-
ence, at all orders, for any input polarization state when the
crystal orientation θ is equal to 0◦ and 45◦, i.e., whenever the
birefringent crystal axes are parallel to one of the two control
operations σX or σZ . In fact, eq. (18) shows that when
sin(4θ) = 0, that is, θ = 0◦, 45◦, it is α(θ, φ) = 0, implying
that the Muller matrix becomes equal the 3 × 3 identity
matrix. This is a first significant benefit of the bang-bang
control which also suggests that decoherence suppression
will be relevant also at orientations θ not too far from 0◦

and 45◦.

C. Gaussian field spectrum

We consider now a Gaussian spectrum for the input field
given by

A(ω) = (πσ2
ω)−1/4 exp

{
− (ω − ω0)2

2σ2
ω

}
, (22)

were σω = 2πc∆λ/λ2
0, with λ0 = 2πc/ω0, and ∆λ

represents the bandwidth of the spectrum in wavelength.
The average over the frequency becomes an integral over
a Gaussian measure with standard deviation σω . As the
frequency dependence of the integrand comes out only
through the phase φ(ω), and assuming a slow variation of the
index of refraction with respect to the frequency, the integrals
can be transformed as an average over a Gaussian measure,
dµφ, centered in φ0 = 2π∆nL/λ0 with standard deviation
σφ = ∆nLσω/c = 2π∆nL∆λ/λ2

0

dµφ =
dφ√
πσ2

φ

e
− (φ−φ0)2

σ2
φ (23)



In order to have a simple and effective characterization of
the performance of the bang-bang control, we quantify the
degradation of the polarization state due to decoherence in
terms of two quantities, the average purity 〈Tr[ρ̂2

out]〉, and
the effective average fidelity 〈Tr[ρ̂outρ̂

0
out]〉. Both quantities

are independent of the input polarization because they are
averaged over a uniform distribution over the Bloch sphere
of pure input polarization states. In particular, the effective
average fidelity gives the probability of recovering at the
output the ideal polarization state one would have in the
absence of PMD, i.e., the state ρ̂0

out obtained in the case of a
monochromatic field at frequency ω0. It is possible to derive
the exact analytical expression for both quantities for the case
without bang-bang control. Using eq. (13) and performing
the averages over frequency and over the Bloch sphere, we
get

〈Tr[ρ̂2
out]〉NoBB =

2
3

+
1
3

exp[−8n2σ2
φ] , (24)

〈Tr[ρ̂outρ̂
0
out]〉NoBB =

2
3

+
1
3

exp[−4n2σ2
φ] . (25)

Both quantities show a Gaussian decay as a function of the
number of n and do not depend on the orientation θ and
the mean phase φ0 = ω0∆nL/c, but only on the phase
variance σ2

φ. The asymptotic limit n → ∞ of 2/3 corre-
sponds to the situation where the averaged Muller matrix
〈V̂NoBB(θ, φ)〉 is the projector over the direction determined
by the Stokes vector s0 of eq. (5). This means that the two
polarization states with Stokes vector ±s0 are unaffected by
the propagation through the crystals, while all polarization
states with Stokes vector orthogonal to s0 are transformed
into the maximally mixed state ρ̂NoBB

out = I/2 for large
n. The polarization states unaffected by the propagation
represent the so-called principal states of polarization (PSPs)
of the optical system, and they corresponds to the linear
polarization states at θ and θ+π/2. Their existence is evident
already from eq. (4), implying that the states with Stokes
vector ±s0 are unaffected by the crystal.

In the case of the bang-bang control, the average over the
Gaussian spectrum is less simple because of the involved
expressions of α(θ, φ) and s(θ, φ), and therefore analytical
results are more difficult to derive. We expect however to find
the same asymptotic limit of 2/3 for both the average purity
and effective fidelity for n →∞ because also in the presence
of bang-bang appropriate PSPs exist, and the asymptotic
averaged Muller matrix 〈V̂BB(θ, φ)〉 is the projector over the
corresponding Stokes direction. It is possible to see that the
PSPs in the presence of bang-bang are the polarization states
with Stokes vector ±s(θ, φ0), i.e., that given by eq. (19) with
φ = φ0 = 2π∆nL/λ0. This can be proved by showing that
if the state with Stokes vector s(θ, φ0) is taken as input state,
the same state is recovered in the limit n →∞. In fact, using
eqs. (15), (17) and (23), one can write for the Stokes vector
after n cavity round trips, pBB

out,n,

pBB
out,n · σ =

∫
dµφeinα(θ,φ)s(θ,φ)·σ [pin · σ] e−inα(θ,φ)s(θ,φ)·σ

=
∫

dµφ {cos [2nα(θ, φ)]pin · σ+

+ sin [2nα(θ, φ)] [pin × s(θ, φ)] · σ +
+ [1− cos [2nα(θ, φ)]] [pin · s(θ, φ)] [s(θ, φ) · σ]} . (26)

It is possible to see that the average of the sinusoidal terms
tends to zero in the limit n →∞ so that

pBB
out,∞ · σ =

∫
dµφ [pin · s(θ, φ)] [s(θ, φ) · σ] . (27)

If we now choose pin = s(θ, φ0) and rewrite s(θ, φ) =
s(θ, φ0) + ∆s(θ, φ) in eq. (27), and use the fact that pin =
s(θ, φ0) is of unit norm, we get

pBB
out,∞ · σ =

∫
dµφ [1 + s(θ, φ0) ·∆s(θ, φ)]

× [s(θ, φ0) · σ + ∆s(θ, φ) · σ] . (28)

It is then possible to see that the average over the Gaussian
measure of eq. (23) of all the terms containing ∆s(θ, φ) is
zero, so that we arrive at

pBB
out,∞ · σ = s(θ, φ0) · σ, (29)

that is, the state with Stokes vector s(θ, φ0) is a PSP of the
optical system with the bang-bang controls.

This means that in the asymptotic limit of a very large
number of cavity round trips (i.e., for very long fibers), bang-
bang control does not improve the purity and the fidelity
of the transmitted polarization state. Nonetheless, bang-bang
control is still very effective in suppressing the decoherence
due to PMD, because, as it will be shown by the numerical
results of the next section, the decay to the asymptotic limit
of 2/3 of the average purity and fidelity for large n is
progressively slower for decreasing crystal lengths, that is,
for closer controlled rotations.

IV. NUMERICAL SIMULATIONS

Monte Carlo simulations to find results for the bang-bang
control on the polarization have been performed. Firstly we
have tested the simulation recovering the analytical results
for the case without bang-bang control. The average purity
〈Tr[ρ̂2

out]〉 and the effective average fidelity 〈Tr[ρ̂outρ̂
0
out]〉

are reported in Fig. 2 as a function of the number of passages
n through the set of 4-crystals, set to an angle θ = 22.5◦ with
respect to the σZ reference frame, for three different values
of the crystal length L = 0.75/x mm, with x = 32, 64 and
128. As expected, for the longer crystal L = 0.75/32 mm
(dotted-line in Fig. 2), decoherence effects are larger. For
each n, the average over the input states and over the
frequency has been performed by considering the evolution
of 96 pure states, randomly chosen according to a uniform
distribution over the Bloch sphere, and with 100 values of
the frequency, generated according to a Gaussian distribution
with central wavelength λ0 = 806 nm and bandwidth
∆λ = 10 nm. The numerical simulations reproduce the
analytical results given by eqs. (24) and (25), with the
expected asymptotic limit of 2/3.



Fig. 2. Average purity and effective average fidelity as function of the
passages, n, in the set of 4-crystals without bang-bang control. The crystal
length is L = 0.75/x mm, with x = 32, 64 and 128 for the black-dotted
lines, circle symbols and black-solid line, respectively. For each n the two
quantities are evaluated as average over 96 polarization pure states uniformly
distributed over the Bloch sphere, and 100 values of the frequency generated
according to a Gaussian distribution with central wavelength λ0 = 806 nm,
and bandwidth ∆λ = 10 nm. The difference between the index refraction
for the fast and slow axes is fixed to ∆n = 0.009, and the axes orientation
to θ = 22.5◦. The red lines are the curves plotted according to eqs. (24)
and (25), without fitting-parameters.

We have then performed a comparison of the previous
results without control with those in the presence of the bang-
bang control. For each number of passages n through the set
of 4-crystals (plus the operations for the bang-bang control),
set again at θ = 22.5◦, we have performed the average over
the Bloch sphere and the frequency in the same way as in
the no-bang-bang case.

The average purity and the effective average fidelity are
reported in Fig. 3, as a function of n, again for the previous
three different values of the crystal length. As expected, for
the longer crystal, L = 0.75/32 mm (dotted-lines in the
purity plots of Fig. 3), the effect of the bang-bang control
is not optimal and the purity and the fidelity are higher than
those with no bang-bang control only up to ∼48 passages.
The expected asymptotic value 2/3 is recovered for both
quantities and is quickly reached for the longer crystals.
Instead for the smaller crystal length, L = 0.375/128 mm
(solid-lines in Fig. 3), the bang-bang control becomes much
more efficient and keeps the purity and the fidelity up to
values higher than 0.95 for almost 128 passages.

In Fig. 4 are reported the average purity and effective
average fidelity as function of the angle θ. The average
has been taken over 192 polarization pure states uniformly

Fig. 3. Average purity and effective average fidelity as function of the
passages, n, in the set of 4-crystals oriented at θ = 22.5◦. The plots
with black-lines correspond to the case of the propagation through the
crystal without bang-bang control, instead with red-lines we report the
plots corresponding to the propagation through the crystals with bang-bang
control. The blue-dashed line correspond to the asymptotic limit for both
the quantities: 2/3. For each n the purity and fidelity are evaluated as
average over 96 polarization pure states uniformly distributed over the Bloch
sphere, and 100 values of the frequency generated according to a Gaussian
distribution with the same parameters and crystal lengths used for the plots
in Fig. 2.

distributed over the Bloch sphere, and 100 values of the
frequency generated according to the Gaussian distribution
with the same parameters used for the plots of Fig. 3. The
crystal length has been fixed to L = 0.375/32 mm, and
the number of passages to n = 64. For the case without
bang-bang control (black-dotted line), the values of the
two average quantities does not depend on the angle θ as
expected, and the asymptotic limit is 2/3 (blue-dashed line).

Instead, the results in the presence of the bang-bang
control are significantly better for a large interval of values
of the crystal orientation θ. This is a consequence of the
complete elimination of decoherence, at all orders, for any
input polarization state when θ = 0◦, 45◦ discussed in the
previous section and which is clearly visible in Fig. 4.

Finally, another important parameter to be considered is
the frequency bandwidth of the field. In Fig. 5 the results for
the average purity and effective average fidelity as function of
the bandwidth for ∆λ = 1, 5, 10 nm are reported for a crystal
length L = 0.75/32 mm. As expected, a narrower bandwidth
allows more passages before the purity and fidelity decrease
to the common asymptotic limit of 2/3, but it does not
improve the factors of merit associated to the bang-bang
control with respect to the one without control.



Fig. 4. Average purity and effective average fidelity as function of the angle
θ for a crystal length L = 0.375/32 mm, and n = 64, corresponding to the
vertical dotted lines in Fig. 3. The plots with dotted-black lines correspond
to the case without bang-bang control, instead with dotted-red lines are
reported the plots with bang-bang control, and the blue-dashed lines the
asymptotic limit 2/3. For each θ the quantities have been evaluated over
192 polarization pure states, and 100 values of the frequency as described
in Fig. 3. The dotted line represent the average of those evaluation over
4-trials, and the gray-areas indicates the standard deviation with respect to
these trials.

V. CONCLUSION

We have proposed a proof-of-principle demonstration of
the potentialities of bang-bang techniques for suppressing the
decoherence on the polarization of photon pulses along op-
tical fibers. In addition to the important application for long
distance, high speed telecommunication in optical fibers, this
method may find applications in other systems in which
one wants to reduce unwanted birefringence. Finally, on the
conceptual side, our work provides a simple system in which
to test the ideas of bang-bang control.
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