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Abstract

The problem of finding all feedback equivalence
classes of Brunovsky and locally Brunovsky linear sys-
tems defined on a commutative ring is related with
combinatorial problem of visiting all partitions of el-
ements in a concrete monoid.
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1 Introduction

The theory of linear control systems over a commuta-
tive ring R goes back to the models of [Morse, 1976]
for delay systems. The main example in our study will
be the ring of continuous real functios= C(K') de-
fined on a compact topological spake(which was in-
troduced in the control theory framework in [Bumby,

Sontag, Sussmann and Vasconcelos, 1981] as mode

for studying parametrized families of systems). Rings
of continuous functions also apply to the geometric
study of differential deformations of linear systems
(see [O’Halloran, 1987] or [Ferrer, Garcia-Planas and
Puerta, 1997]).

This paper deals with the feedback classification pro-

blem for linear systems over a commutative ring.

To be concise, we are interested in the enumera-
tion of all feedback classes of reachable linear sys-
For general reading on the subject we refer

tems.
to [Brunovsky, 1970], [Brewer, Bunce and VanVleck,
1986], [Hermida-Alonso, Pérez and Sanchez-Giralda
1996], [Carriegos, 2003] and references therein.
Geometric properties of commutative ridiyare cru-
cial: In fact we prove that the problem of enumerat-
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modules. Moreover, note that in the particular case
of R = C(K) being the ring of real continuous func-
tions defined on a compact topological spdcehen
monoid (P(R), @) is equivalent to monoid of finite
dimensional real vector bundles ovAar (see [Swan,
1962]).

The description of monoi®(R) is in general very
difficult. To avoid this, we also provide a nesta-

ble feedback equivalence relation and conjecture that
this new relation may be studied by working with the
Grothendieck’s group completioko(R) of monoid
P(R).

Organization of the paper

In section2 we review some well known facts about
linear systems over a commutative ring, feedback
equivalence. Main invariants are also revised. Section
3 is devoted to study Brunovsky case: This is the case
of constant linear systems over a field, and it is solved
Ipy studying classical partitions of an integer. Section
deals with the more general case of locally Brunovsky
linear systems: This is the case of projective invariants
or, if R = C(K), the case of smooth invariants. We
solve the problem by studying direct-sum decomposi-
tions of elements of monoif?(R). The cases of real
circle and real sphere are specially focused. Section
5 is devoted to describe a dynamic study of feedback
equivalence related to the Grothendieck’s group com-
pletion K (R) of monoidP(R). Finally we include a
conclusion.

'2  Preliminaries

Let R be a commutative ring with identity element

1#0.

ing all feedback classes of reachable linear systems 2.1. A linear system oveR is given by a linear rule

over R" is equivalent to the problem of enumerating
all direct-sum decompositions dR™ as an element
of monoid P(R) of finitely generated projectiver-

(or right hand side) on the forma* = Ax + Bu where
x € X are statesu € U are inputs, ande™ is the
time-derivative or time-shift in the sequential case.



Sets of state(’ and of inputdJ/ are R-modules while
mapsA and B are R-linear maps.

U
> B 1)
X -4 X
2.2. Above linear systerl and linear system
Ul
DTN (2
XI _)A’ XI

are said to bd-eedback Equivaleiftone can bring one
of them into the another by a finite composition of the
following Basic Feedback Actions

1. Isomorphisms) : U — U’ in the input module
which transformg A, B) — (A, BQ)
Isomorphisms® : X — X' in the state module
which transformg A, B) — (PAP~!, PB)
Feedback action$’ : X — U which transforms

(A,B) — (A+ BF, B)

2.

3.

Consequently a general feedback actidh Q, F')
brings linear systerx = (A, B) to system

(P(A+ BF)P™', PBQ). 3)
2.3. Partial reachability linear map given by
¢y =(BAB--- A7'B):UY — X (4)

is a feedback invariant, up to equivalence, associ-
ated toX (see [Hermida-Alonso, &ez and 8nchez-
Giralda, 1996] and [Carriegos, 2003]).

Consequently we obtain our main set of feedback in-
variants:

2.4. Quotient modules

NEFI/NZ'E =

AiB)/Im(B, AB, ..., A1) ©®)

Im(B, AB, ...,

are feedback invariants, up to isomorphism, associated
to systent..

3 n-dimensional Brunovsky systems and parti-
tions of integern
3.1. Alinear systent = (A, B) is a Brunovsky sys-
tem if it is equivalent to a Brunovsky canonical form.

In the case ok = K being a field, a Brunovsky linear

3.2. The problem of enumerating all feedback classes
of reachable linear systems ov&r* is equivalent to
the classical problem of enumerating all partitions of
integern.

Consequently, classical enumeration algorithms
[Knuth, 2004] may be directly translated from parti-
tions of a given integen to reachable linear systems
overKkK".

The problem can also be attacked in the case of lin-
ear systems such that all its invariants are free defined
over commutative ring® such that finitely generated
projectiveR-modules are free:

3.3. Assume that commutative rirfg)is projectively
trivial (i.e. all projective R-modules are free) then lin-
ear system® = (A, B) over R" is equivalent to a
Brunovsky canonical form if and only if all invariant
R-modulesVZ | /N7 are free.

Thus the problem of enumerating all feedback classes
of reachable linear systems with free invariants over
a projectively trivial ring is actually equivalent to the
problem of enumerating all Brunovsky canonical forms
and thus equivalent to the problem of enumerating all
partitions of the integen.

3.4. The key is that, in the case of reachable linear
systems over a field or, in the more general framework
of projective-free rings, if all thé2-modulesV;; , /N>
are free then they are really a complete set of invariants
verifying that

X=N"o(NS/NY)@-- @& (NJ/NZ,)  (6)

are in one-to-one correspondence with the set of parti-
tions of integem in decreasing sequences, or, equiva-
lently or by all the Ferrers diagrams of integer

For example, if we set = 4 we have the following
Ferrers diagrams visited following the reverse lexico-
graphical order:

LT

or, equivalently the following partitions af € N:

4=4,
4=2+4+1+1,

4=14+1+1+1. (7)

Consequently, the description of all types of

system is just a reachable linear system. Then one haBrunovsky linear systems over a commutative riRg

the following result.

does not depend on the rirdgbut on the dimension



of free state modul&X. In fact, there are exactly(n)
Brunovsky linear systems over a free modilex R",
wherep(n) is the number of partitions of integer

4 Locally Brunovsky systems and partitions of an
element of a monoid
Let 3 be a reachable linear system ovgt.

4.1. If invariant modulesN;; , /N | are projective
then systent is locally Burnovsky (see [Carriegos,
2003)).

4.2. The feedback classification problem for locally
Brunovsky linear systems ovEf (i.e. the case of pro-
jective invariants) is equivalent to the problem of char-
acterization of all possible decompositions of finitely
generated?-moduled’ and X on the form

U= Qo PR

X=PaPo- P, ®)

the symbolsR (trivial vector bundle) and® (Mobius
Strip) modulo the relatiol® ® P = R® R = R?
(see [Rosenberg, 1994]), in other words if = S!

is the above example of real unit circumference then
(P(C(S')),®) is the commutative monoid given, in
terms of generators and relations, by, P : P?
R?).

Thus a feedback class of mdimensional locally
Brunovsky linear system over the real unit circumfer-
ence is determined by a partition of elemeiit €
(R,P : P? = R?). Allowed partitions forn = 3
(in the sense of Theorem 4.3 are the following:

R3 = R?

R*~ R?’®R

R~ (ReP)® P (10)
R~ RO®ROR

and hencés: (n) = 4 (thoughps: (n) = 5).

Example 4.5. We can compute how many feedback

With the only restriction to solve the system of equa- classes are there in terms éf andn. As matter of

tions is thatP;,; must be a direct summand &f for
all 5.

On the other hand if we are not worried about he gen-

erators of input space or, in other words, we allow an-
cillary blank inputs, the following result applies:

Theorem 4.3. Enumerating all feedback equivalence
classes of reachable linear systems owerallowing
ancillary inputs is equivalent to enumerating all de-
compositions

X=PoP,&d &P 9

whereP;; is a direct summand a¥;.

4.4. Let's denote bypgr(n) the number of non-
isomorphic decompositions &* while pz(n) denotes
the number of non-isomorphic decompositidtis =
P ®---® Ps; whereP;, is a direct summand af;.

Note that if R is projectively trivial thenpg(n) =
pr(n) = p(n) is the number of partitions of integer
n butin generapr(n) < pr(n).

Anyway, one needs to in order to know exactly the
monoid (P(R), ®) of isomorphism classes of finitely
generatedR-modules in order to give the complete
classification of locally Brunovsky linear systems.

The full description of the monoidP(R),®) is a
great task. Of course if finitely generated projectives
are free thefP(R), @) is isomorphic toN U {0}, +)
but in general this is not the case.

If R C(K) is the ring of continuous func-
tions defined on a compact topological spdcehen
(P(R), ®) depends on the topology &f. For instance
if K = S is the real unit circumference théP (R =
C(S')),®) is the commutative monoid generated by

example we next compute the casBsa( projectively
trivial ring, R being the ring of continuous functions
defined over the real unit circle anl being the ring

of real continuous functions defined over the real unit
sphere:

n | pn(n) | Psi(n) | ps2(n)

1] 1 1 1

21 2 3 2

3] 3 4 3

4] 5 9 0 (11)
51 7 11 o0

6| 11 24 0

Above computations have been performed as follows:
For the case of partitions of intege(n) we have the
usual Euler theory (see [Knuth, 2004]).

If R Sk R[sinf,cos 6] then: P(R)
{a,b)/{ab = ba,a? = b}, the calculation ofs: (n)
can be performed by using "colored” Ferrers’ Dia-
grams [Carriegos, 2007]. In particular, it is not hard
to prove thatps: (n) < oo, but it may be interesting to
evaluate the asymptotic behavi6Xps: (n)) in terms
of the dimensiom of state-space.

Finally if R = S2 = Rz, vy, 2]/(2® + y? + 22 — 1)
thenP(R) is the following monoid [Rosenberg, 1994]:

(P(R),®) =
({(07 O)a (17 O)a (27 Oé), (na ﬁ) IS 276 € ZQ}) >I<)
(12)
wherexl operates as follows: i + ¢ < 2 then
(a,bpR(c,d) = (a+c,b+d) (13)



while if a + ¢ > 3 one has

(a,bpH(c,d) = (a+ ¢, b+ d(mod2)) (14)

Thuspsz(n) can be directly computed for < 3. To
check thatpsz(n) = oo for n > 4 only note that for
n > 2 and allj we have

(2n,0) = (2,25 - - "4(2, 2)) (15)

and

(2n+1,0) = (3,00H(2, 25 K- - ¥ K(2,25) (16)

4.6. Note that in the general case a recursive proce-
dure calculatingP),(n) and in particular Py (n) is
needed.

5 Future work: Dynamic study and Ko (R)

The usual dynamic study of a systefd, B) (e.g.
dynamic stabilization, see [Brewer, Bunce and Van-
Vleck, 1986], [Hermida-Alonso, Lbpez-Cabeceira
and Trobajo, 2005], [Hermida-Alonso and Lépez-
Cabeceira, 2006] or [Hermida-Alonso and Trobajo,
2003]) allows to introduce ancillary variables an the
augmented system

00

(A,B) = (0,1)® (4, B) = <0A) ’ <1 0

0 B) (7)

A generalization of dynamic study is the following:

Definition 5.1. We say that systeniA, B) is sta-
bly equivalent to systenfA’, B’) if there exists a
Brunovsky systertY, .J) such that

(I,J)® (A, B) = (éj) (

are equivalent

J O
19) o

The following result can be obtained by direct calcu-
lations:

Theorem 5.2. Feedback invariants of augmented sys-
tem splits:

NUDEAB) ) ()
Neas © o O s (19

Therefore feedback equivalence would be related to
the study of some kind of partitions (R) while sta-
ble feedback equivalence deals with the study of some
kind of partitions inK(R).

GroupsK(R) are described for the case of spheres of
any dimension both in the real, complex and quaternion
cases (see [Rosenberg, 1994], [Weibel, 2009]). Hence
in order to describe all the stable feedback classes for
the case of systems over the ring of continuous func-
tions over real or complex spheres we only need to
compute partitions in the following,-groups depend-
ing on the dimension of the sphere:

Real caseR? = C(S§):

n(mod8) K()(R)
1 7.® Lo
2 7.® Ly
3 Z
4 YASY/ (20)
) Z
6 Z
7 Z
8 YASY/

Complex cas&® = C(Sg):

n(mod2) | Ky(R)
1 Z (21)
2 YASY/

6 Conclusion

The problem of enumerating all feedback classes of
reachable linear systems ovet whereR is a commu-
tative ring is related to the problem of enumerating all
possible direct-sum decompositions®f into P(R).
Thus we need to study partitions of elements in a com-
mutative monoid.

Itis conjectured that the problem may be simplified by
introducing a newstablefeedback equivalence which
carries the problem to studying partitions in the

theory groupK(R).
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