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Abstract
The problem of finding all feedback equivalence

classes of Brunovsky and locally Brunovsky linear sys-
tems defined on a commutative ring is related with
combinatorial problem of visiting all partitions of el-
ements in a concrete monoid.
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1 Introduction
The theory of linear control systems over a commuta-

tive ring R goes back to the models of [Morse, 1976]
for delay systems. The main example in our study will
be the ring of continuous real functionsR = C(K) de-
fined on a compact topological spaceK (which was in-
troduced in the control theory framework in [Bumby,
Sontag, Sussmann and Vasconcelos, 1981] as model
for studying parametrized families of systems). Rings
of continuous functions also apply to the geometric
study of differential deformations of linear systems
(see [O’Halloran, 1987] or [Ferrer, Garcı́a-Planas and
Puerta, 1997]).
This paper deals with the feedback classification pro-

blem for linear systems over a commutative ring.
To be concise, we are interested in the enumera-
tion of all feedback classes of reachable linear sys-
tems. For general reading on the subject we refer
to [Brunovsky, 1970], [Brewer, Bunce and VanVleck,
1986], [Hermida-Alonso, Pérez and Sánchez-Giralda,
1996], [Carriegos, 2003] and references therein.
Geometric properties of commutative ringR are cru-

cial: In fact we prove that the problem of enumerat-
ing all feedback classes of reachable linear systems
over Rn is equivalent to the problem of enumerating
all direct-sum decompositions ofRn as an element
of monoid P(R) of finitely generated projectiveR-

modules. Moreover, note that in the particular case
of R = C(K) being the ring of real continuous func-
tions defined on a compact topological spaceK then
monoid (P(R),⊕) is equivalent to monoid of finite
dimensional real vector bundles overK (see [Swan,
1962]).
The description of monoidP(R) is in general very

difficult. To avoid this, we also provide a newsta-
ble feedback equivalence relation and conjecture that
this new relation may be studied by working with the
Grothendieck’s group completionK0(R) of monoid
P(R).

Organization of the paper
In section2 we review some well known facts about

linear systems over a commutative ring, feedback
equivalence. Main invariants are also revised. Section
3 is devoted to study Brunovsky case: This is the case
of constant linear systems over a field, and it is solved
by studying classical partitions of an integer. Section4
deals with the more general case of locally Brunovsky
linear systems: This is the case of projective invariants
or, if R = C(K), the case of smooth invariants. We
solve the problem by studying direct-sum decomposi-
tions of elements of monoidP(R). The cases of real
circle and real sphere are specially focused. Section
5 is devoted to describe a dynamic study of feedback
equivalence related to the Grothendieck’s group com-
pletionK0(R) of monoidP(R). Finally we include a
conclusion.

2 Preliminaries
Let R be a commutative ring with identity element

1 6= 0.

2.1. A linear system overR is given by a linear rule
(or right hand side) on the formx+ = Ax + Bu where
x ∈ X are states,u ∈ U are inputs, andx+ is the
time-derivative or time-shift in the sequential case.



Sets of statesX and of inputsU areR-modules while
mapsA andB areR-linear maps.

Σ :
U

ցB

X →A X
(1)

2.2. Above linear systemΣ and linear system

Σ′ :

U ′

ցB′

X ′ →A′

X ′

(2)

are said to beFeedback Equivalentif one can bring one
of them into the another by a finite composition of the
followingBasic Feedback Actions:

1. IsomorphismsQ : U → U ′ in the input module
which transforms(A, B) → (A, BQ)

2. IsomorphismsP : X → X ′ in the state module
which transforms(A, B) → (PAP−1, PB)

3. Feedback actionsF : X → U which transforms
(A, B) → (A + BF, B)

Consequently a general feedback action(P, Q, F )
brings linear systemΣ = (A, B) to system

(P (A + BF )P−1, PBQ). (3)

2.3. Partial reachability linear map given by

ϕΣ
i =

(
B AB · · · Ai−1B

)
: U⊕i −→ X (4)

is a feedback invariant, up to equivalence, associ-
ated toΣ (see [Hermida-Alonso, Ṕerez and Śanchez-
Giralda, 1996] and [Carriegos, 2003]).

Consequently we obtain our main set of feedback in-
variants:

2.4. Quotient modules

NΣ
i+1/N

Σ
i =

Im(B, AB, ..., AiB)/Im(B, AB, ..., Ai−1B)
(5)

are feedback invariants, up to isomorphism, associated
to systemΣ.

3 n-dimensional Brunovsky systems and parti-
tions of integern

3.1. A linear systemΣ = (A, B) is a Brunovsky sys-
tem if it is equivalent to a Brunovsky canonical form.

In the case ofR = K being a field, a Brunovsky linear
system is just a reachable linear system. Then one has
the following result.

3.2. The problem of enumerating all feedback classes
of reachable linear systems overKn is equivalent to
the classical problem of enumerating all partitions of
integern.

Consequently, classical enumeration algorithms
[Knuth, 2004] may be directly translated from parti-
tions of a given integern to reachable linear systems
overKn.
The problem can also be attacked in the case of lin-

ear systems such that all its invariants are free defined
over commutative ringsR such that finitely generated
projectiveR-modules are free:

3.3. Assume that commutative ringR is projectively
trivial (i.e. all projectiveR-modules are free) then lin-
ear systemΣ = (A, B) over Rn is equivalent to a
Brunovsky canonical form if and only if all invariant
R-modulesNΣ

i+1/N
Σ
i are free.

Thus the problem of enumerating all feedback classes
of reachable linear systems with free invariants over
a projectively trivial ring is actually equivalent to the
problem of enumerating all Brunovsky canonical forms
and thus equivalent to the problem of enumerating all
partitions of the integern.

3.4. The key is that, in the case of reachable linear
systems over a field or, in the more general framework
of projective-free rings, if all theR-modulesNΣ

i+1/N
Σ
i

are free then they are really a complete set of invariants
verifying that

X = NΣ
1 ⊕ (NΣ

2 /NΣ
1 ) ⊕ · · · ⊕ (NΣ

s /NΣ
s−1) (6)

are in one-to-one correspondence with the set of parti-
tions of integern in decreasing sequences, or, equiva-
lently or by all the Ferrers diagrams of integern.

For example, if we setn = 4 we have the following
Ferrers diagrams visited following the reverse lexico-
graphical order:

or, equivalently the following partitions of4 ∈ N:

4 = 4, 4 = 3 + 1, 4 = 2 + 2,
4 = 2 + 1 + 1, 4 = 1 + 1 + 1 + 1.

(7)

Consequently, the description of all types of
Brunovsky linear systems over a commutative ringR
does not depend on the ringR but on the dimensionn



of free state moduleX . In fact, there are exactlyp(n)
Brunovsky linear systems over a free moduleX ∼= Rn,
wherep(n) is the number of partitions of integern.

4 Locally Brunovsky systems and partitions of an
element of a monoid

Let Σ be a reachable linear system overRn.

4.1. If invariant modulesNΣ
i+1/N

Σ
i+1 are projective

then systemΣ is locally Burnovsky (see [Carriegos,
2003]).

4.2. The feedback classification problem for locally
Brunovsky linear systems overRn (i.e. the case of pro-
jective invariants) is equivalent to the problem of char-
acterization of all possible decompositions of finitely
generatedR-modulesU andX on the form

U = Q ⊕ P1

X = P1 ⊕ P2 ⊕ · · · ⊕ Ps
(8)

With the only restriction to solve the system of equa-
tions is thatPi+1 must be a direct summand ofPi for
all i.

On the other hand if we are not worried about he gen-
erators of input space or, in other words, we allow an-
cillary blank inputs, the following result applies:

Theorem 4.3. Enumerating all feedback equivalence
classes of reachable linear systems overX allowing
ancillary inputs is equivalent to enumerating all de-
compositions

X = P1 ⊕ P2 ⊕ · · · ⊕ Ps (9)

wherePi+1 is a direct summand ofPi.

4.4. Let’s denote bypR(n) the number of non-
isomorphic decompositions ofRn while p̃R(n) denotes
the number of non-isomorphic decompositionsRn ∼=
P1 ⊕ · · · ⊕ Ps wherePi+1 is a direct summand ofPi.

Note that if R is projectively trivial thenp̃R(n) =
pR(n) = p(n) is the number of partitions of integer
n but in general̃pR(n) ≤ pR(n).
Anyway, one needs to in order to know exactly the

monoid(P(R),⊕) of isomorphism classes of finitely
generatedR-modules in order to give the complete
classification of locally Brunovsky linear systems.
The full description of the monoid(P(R),⊕) is a

great task. Of course if finitely generated projectives
are free then(P(R),⊕) is isomorphic to(N ∪ {0}, +)
but in general this is not the case.
If R = C(K) is the ring of continuous func-

tions defined on a compact topological spaceK then
(P(R),⊕) depends on the topology ofK. For instance
if K = S1 is the real unit circumference then(P(R =
C(S1)),⊕) is the commutative monoid generated by

the symbolsR (trivial vector bundle) andP (Möbius
Strip) modulo the relationP ⊕ P = R ⊕ R = R2

(see [Rosenberg, 1994]), in other words, ifK = S1

is the above example of real unit circumference then
(P(C(S1)),⊕) is the commutative monoid given, in
terms of generators and relations, by〈R, P : P 2 =
R2〉.
Thus a feedback class of an-dimensional locally

Brunovsky linear system over the real unit circumfer-
ence is determined by a partition of elementRn ∈
〈R, P : P 2 = R2〉. Allowed partitions forn = 3
(in the sense of Theorem 4.3 are the following:

R3 ∼= R3

R3 ∼= R2 ⊕ R
R3 ∼= (R ⊕ P ) ⊕ P
R3 ∼= R ⊕ R ⊕ R

(10)

and hencẽpS1(n) = 4 (thoughpS1(n) = 5).

Example 4.5. We can compute how many feedback
classes are there in terms ofR and n. As matter of
example we next compute the cases (R a projectively
trivial ring, R being the ring of continuous functions
defined over the real unit circle andR being the ring
of real continuous functions defined over the real unit
sphere:

n pN(n) p̃S1(n) p̃S2(n)
1 1 1 1
2 2 3 2
3 3 4 3
4 5 9 ∞
5 7 11 ∞
6 11 24 ∞
...

...
...

...

(11)

Above computations have been performed as follows:
For the case of partitions of integerpN(n) we have the
usual Euler theory (see [Knuth, 2004]).
If R = S1

R
= R[sin θ, cos θ] then: P(R) =

〈a, b〉/{ab = ba, a2 = b2}, the calculation ofpS1(n)
can be performed by using ”colored” Ferrers’ Dia-
grams [Carriegos, 2007]. In particular, it is not hard
to prove thatpS1(n) < ∞, but it may be interesting to
evaluate the asymptotic behaviorO(pS1 (n)) in terms
of the dimensionn of state-space.
Finally if R = S2

R
= R[x, y, z]/(x2 + y2 + z2 − 1)

thenP(R) is the following monoid [Rosenberg, 1994]:

(P(R),⊕) =
({(0, 0), (1, 0), (2, α), (n, β) : α ∈ Z, β ∈ Z2}, z)

(12)
wherez operates as follows: Ifa + c ≤ 2 then

(a, b)z(c, d) = (a + c, b + d) (13)



while if a + c ≥ 3 one has

(a, b)z(c, d) = (a + c, b + d(mod2)) (14)

ThuspS2(n) can be directly computed forn ≤ 3. To
check thatpS2(n) = ∞ for n ≥ 4 only note that for
n ≥ 2 and allj we have

(2n, 0) = (2, 2j)z · · ·z(2, 2j) (15)

and

(2n + 1, 0) = (3, 0)z(2, 2j)z · · ·z(2, 2j) (16)

4.6. Note that in the general case a recursive proce-
dure calculatingPM (n) and in particular P̃M (n) is
needed.

5 Future work: Dynamic study and K0(R)
The usual dynamic study of a system(A, B) (e.g.

dynamic stabilization, see [Brewer, Bunce and Van-
Vleck, 1986], [Hermida-Alonso, López-Cabeceira
and Trobajo, 2005], [Hermida-Alonso and López-
Cabeceira, 2006] or [Hermida-Alonso and Trobajo,
2003]) allows to introduce ancillary variables an the
augmented system

(Â, B̂) = (0,1)⊕ (A, B) =

(
0 0

0 A

)
,

(
1 0

0 B

)
(17)

A generalization of dynamic study is the following:

Definition 5.1. We say that system(A, B) is sta-
bly equivalent to system(A′, B′) if there exists a
Brunovsky system(I, J) such that

(I, J) ⊕ (A, B) =

(
I 0

0 A

) (
J 0

0 B

)
(18)

are equivalent

The following result can be obtained by direct calcu-
lations:

Theorem 5.2. Feedback invariants of augmented sys-
tem splits:

N
(I,J)⊕(A,B)
i+1

N
(I,J)⊕(A,B)
i

∼=
N

(I,J)
i+1

N
(I,J)
i

⊕
N

(A,B)
i+1

N
(A,B)
i

(19)

5.3. As consequence of above result we conjecture
that two locally Brunovsky linear systems are stably
equivalent if and only if their feedback invariants lie
in the same class in the groupK0(R).

Therefore feedback equivalence would be related to
the study of some kind of partitions inP(R) while sta-
ble feedback equivalence deals with the study of some
kind of partitions inK0(R).
GroupsK0(R) are described for the case of spheres of

any dimension both in the real, complex and quaternion
cases (see [Rosenberg, 1994], [Weibel, 2009]). Hence
in order to describe all the stable feedback classes for
the case of systems over the ring of continuous func-
tions over real or complex spheres we only need to
compute partitions in the followingK0-groups depend-
ing on the dimensionn of the sphere:
Real caseR = C(Sn

R
):

n(mod8) K0(R)
1 Z ⊕ Z2

2 Z ⊕ Z2

3 Z

4 Z ⊕ Z

5 Z

6 Z

7 Z

8 Z ⊕ Z

(20)

Complex caseR = C(Sn
C
):

n(mod2) K0(R)
1 Z

2 Z ⊕ Z

(21)

6 Conclusion
The problem of enumerating all feedback classes of

reachable linear systems overRn whereR is a commu-
tative ring is related to the problem of enumerating all
possible direct-sum decompositions ofRn into P(R).
Thus we need to study partitions of elements in a com-
mutative monoid.
It is conjectured that the problem may be simplified by

introducing a newstablefeedback equivalence which
carries the problem to studying partitions in theK-
theory groupK0(R).
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