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Abstract
The linear differential-difference systems with con-

stant coefficients and linearly increasing time delay are
considered. A double stage approach is applied for sta-
bility analysis of these systems. As a main result the
sufficient conditions of the asymptotic stability and in-
stability are obtained. The results are illustrated on the
example of multi-agency systems.
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1 Introduction
The differential-difference systems with proportional

time-delay are worse studied than the same systems
with constant delay. However the time-delay is not
always constant. For example a mathematical model
of the dynamic of the information server [Zhabko and
Chizhova, 2015b] takes account the time required for
information processing or the technological time-delay.
This delay is proportional to the volume of information
being processed. The same time-delay is in the model
considered in [Zhabko and Chizhova, 2015a]. An in-
creasing transport time-delay occurs in the mathemati-
cal model of the information exchange between objects
receding from each other. It should be noted that this
time-delay is unbounded and well known approaches
are not applicable for stability analysis such systems.
The method of the power series was suggested for

constructing of the system solutions [Valeev, 1964;
Valeev, 1967]. Some sufficient conditions of the
asymptotic stability for the high order equations with
linearly increasing time-delay were obtained there.
Some types of such equations and systems were in-
vestigated in [Grebenshchikov, 1983; Grebenshchikov,
1986; Grebenshchikov and Novikov, 2010]. The es-
timates of solutions were derived and sufficient con-
ditions of the asymptotic stability and instability were

obtained. The asymptotical behavior of the solutions
of the system with several linearly increasing time-
delays was studied in [Laktionov and Zhabko, 1998;
Zhabko and Laktionov, 1997]. Some algebraic condi-
tions of asymptotic stability and instability of the sys-
tems was also given there. Based on the linear approx-
imation stability criteria are true [Krasovskij, 1955;
Bellman and Kuk, 1967; Zubov, 1973] for differential-
difference systems with bounded time-delay. But con-
sidered in the paper systems are not time-invariant so
Laplas transformations are not applicable in this case.
The main goal of this paper is the application of the

new approach to the study of stability of the systems
of linear equations with constant coefficients and lin-
early increasing time-delay. The analysis of stabil-
ity such system in the coefficient space was given in
[Valeev, 1964; Valeev, 1967; Laktionov and Zhabko,
1998; Zhabko and Laktionov, 1997]. However auxil-
iary transformation is used in this paper. The appli-
cation of a double-stage approach allows reducing the
problem of stability analysis by Lyapunov to the se-
rial approach Razumihin for the auxiliary system of
differential-difference equations and the stability anal-
ysis of difference systems. This approach allows im-
proving the previous results and obtaining the estimates
of the asymptotical behavior of the solutions.
The proposed method can be effective in the following

cases

the analysis of stability the systems of linear equations
with constant coefficients and linearly increasing
time-delay by using of Lyapunov functions [Razu-
mikhin, 1956].

the application of modifications of the Lyapunov-
Krasovsrii approach [Kharitonov, 2005a;
Kharitonov, 2005b] to the linear systems with
undefined coefficients and linearly increasing
time-delay.

the application of Razumihin approach to systems
of homogeneous differential-difference equations
with linearly increasing delay [Alexandrov and
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Zhabko, 2012; Alexandrov and Zhabko, 2013].
some multidimensional of the mathematical physic

equations [Provotorov, 2014] should be considered
as dynamical systems with unbounded delays.

2 A Dynamic Model of Traffic on the Ring Road
Let us consider the RR (ring road) which divided into

the sections between the two nearest descents. Let the
sections are numbered from 1 to N so that the first sec-
tion and section number N are nearest descents. Let
xi(t) and vi(t) be average traffic density and average
speed on the section number i at the moment t. Let
ri(t) denote average traffic density at the entrance in
the beginning of the section number i and let di(t) be
average traffic density at the exit at the end of the sec-
tion number i − 1. Let the traffic on RR occurs with
the maximum admissible speed ṽ0 if possible. So we
define the following function

vi = vi(xi) =
ṽ0, if xi ≤ x̃0

ṽ(xi), if xi > x̃0.

}
(1)

Here x̃0 is limit value of the traffic density when the
admissible speed ṽ0 would be reached. If traffic density
is increasing then admissible speed is decreasing.
Then the function ṽ(x) is strictly decreasing. We de-

note as li the length of the section number i. Let the
functions xi(t), vi(t), ri(t) and di(t) are continuously
differentiable. Then the balance equation for section
number i may be written in the form

xi(t+∆)li = xi(t)li − xi(t)vi(xi(t))∆+
+xi−1(t)vi−1(xi−1(t))∆− di(t)vi−1(xi−1(t))∆+

+ri(t)vi(xi(t))∆ +O(∆2).

Since xi(t + ∆) = xi(t) + ∆ẋi(t) + O(∆2) we can
divide by ∆ last equality and consider the limit for
∆ → 0. Then the next system of equations may be
obtained

liẋi = −xivi(xi) + xi−1vi−1(xi−1)−
−divi−1(xi−1) + rivi(xi(t))

i = 1, 2, . . . , N,
(2)

where x0(t) ≡ xN (t) and v0(x) ≡ vN (x). The system
(2) is multi-agency system [Amelina et al., (2015)] de-
scribed as a system of ordinary differential equations.
Let us formulate a problem of the RR traffic control.

The entrance traffic density ri(t) (i = 1, . . . , N) could
be control law and the RR traffic parameters would be
used as observations.
Let us consider the control function
u(t) = (r1(t), r2(t), . . . , rN (t)) and admissible
set U = R+

n which is positive subset in the space Rn.
Let the performance criterion is of the form

V (u(·)) = min
u(t)∈U,t≥0

vi(xi(t)).

Then the simple problem formulated as finding an
admissible control u(t) for t ≥ 0 such that
V (u(·)) ≥ ṽzad.
In accordance with the physical essence of the model

we can say that ṽzad ≤ ṽ0 (sec.(1)). Then the problem
will be solved if vi(xi(t)) ≥ ṽzad for i = 1, 2, . . . , N
and t ≥ 0. Without loss of generality we can assume
that ṽzad = ṽ0.
Let we know the values xi(t) for i = 1, 2, . . . , N . We

will look for a control u(t) in the form

ui(t) =
N−1∑
ν=0

αiνxi+ν(t− hiν), i = 1, 2, . . . , N (3)

Here xi+ν = xi+ν−N if i + ν > N . It should be
noted that αiν ≥ 0, αiν ̸= ανi, hiν ̸= hνi, for i ̸= ν
and 0 = hi0 < hi1 < . . . < hiN−1.
The system (2), (3) is the multi-agency controllable

system of differential equations with delay. The delay
hiν is the function of the system state. This value shows
that RR section number ν affects the section number i
after the time for which a car moves from section num-
ber ν to section number i.
Let the function ṽ(x) is defined as

ṽ(x) =
ṽ0x̃0

x̃0 + a(x− x̃0)

for x > x̃0 and ẋiν is average speed of traffic density
increasing between the section number ν and the sec-
tion number i at the moment t.
Then the value hiν may be defined as

hiν = liν
x0 + aẋiν(t− t)

ṽ0x̃0
= h0

iν + γiν(t− t), (4)

where liν is the distance between the section number ν
and the section number i, a > 0.
Therefore if the average traffic density is exceeded in

some sections RR then traffic dynamic is described by
the multi-agency system with constantly and linear in-
creasing delay.
The problem of stability and instability of systems

with limited delay was studied in the previously quoted
papers . The same problem for system

ẋ(t) = Ax(t) +Bx(γt), 0 < γ < 1

was solved in [Zhabko and Chizhova, 2015a].
We will show that the problem of maintaining a spec-

ified speed on RR is reduced to stability analysis of the
system with linear increasing delay. Indeed, system (2)
has a set of equilibrium solutions

xi(t) = xi, vi(xi(t)) = ṽ(xi),
ri(t) = di(t) = di, i = 1, 2, . . . , N.
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These solutions can be found from the system of alge-
braic equations

(xi − di) · ṽ(xi) = (xi−1 − di) · ṽ(xi−1)
i = 1, 2, . . . , N

}

In particular, if

xi = xi > x̃0, vi = v, ri = di = di,
ẋiν = ẋ for i = 1, 2, . . . , N

(5)

then

hiν = liν
x̃0 + a(x− x̃0 + ẋt)

ṽ0x̃0
= liν(h+ γt). (6)

Now we introduce the new values

xi = x+yi, ri = di+zi, di = di+∆i, i = 1, 2, . . . , N.

Then the system of linear approximation for system (2),
(3), (4) in a neighborhood of the equilibrium solution
(5) has a form

ẏi =
v
li
((1− cx+ cdi)(yi−1 − yi) + zi +∆i) ,

i = 1, 2, . . . , N,
(7)

where

c =
a

x̃0 + a(x− x0)
; zi(t) =

N−1∑
ν=0

αiνyi+ν(t− hiν).

System (6), (7) is linear retarded type system with
constant and linearly increasing delay.
Then the approach for analysis asymptotic stability of

a system with distributed delay will be given.
Consider the linear retarded type system with linearly

increasing delay

ẏ(t) = Ay(t) +

q∫
p

dγG(γ)y(γt), (8)

where y(t) is n – dimensional state vector, A is real
constant (n×n) matrix, G(γ) is real bounded variation
matrix; 0 < p < q < 11.

1The research was supported by the Saint Petersburg State Uni-
versity (project No. 9.37.157.2014), and by the Russian Foundation
for Basic Research (grant No. 15-58-53017)

3 Main Symbols and Definitions
Let us consider system (8). We introduce continuous

initial functions

φ : [pt0; t0] → Rn; y(t0) = y0; t0 > 0. (9)

Obviously, zero solution of system (8) corresponds
to zero initial functions φ(t) ≡ 0. It is well known
[Kharitonov, 2013] that the initial data problem (8), (9)
has uniqueness solution for any φ : [pt0; t0] → Rn

and t0 > 0, moreover any solution is defined for any
t ≥ t0 > 0.
Introduce the vector functions yk(t) for k = 0, 1, . . .

by the equalities

yk+1(t) = Ayk(t) +

q∫
p

γkdγG(γ)yk(γt), (10)

where y0(t) = y(t). These functions are defined
and continuous for t ≥ p1−kt0 any and continuously
differentiable for any t ≥ p−kt0. Moreover, for any
t ≥ p−kt0 the following equalities hold

ẏk(t) = Ayk(t) +

q∫
p

γkdγG(γ)yk(γt).

Remark 1. If the vector function y(t, t0, φ) is the so-
lution of the initial data problem (8), (9) then following
equalities hold

yk(t) =
dky(t, t0, φ)

dtk
(11)

for any t ≥ p1−kt0.
Let us consider the system of equations

ẏk(t) = Ayk(t) +

q∫
p

γkdγG(γ)yk(γt), (12)

for t ≥ t0.
Lemma. Let vector function yk(t) be a continuous so-

lution of system (12) for t ≥ t0 with continuous initial
function φk(t) for t ∈ [pt0; t0] and

det

(
A+

∫ q

p

γsdγG(γ)

)
̸= 0

for s = 0, 1, . . . , k − 1. Then there exists a continuous
function φ(t) for t ∈ [pt0; t0] such that equality (11)
holds for any t ≥ p1−kt0.
Proof. The proof of the lemma is similar to that of

lemma in [Zhabko and Chizhova, 2015a].
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4 Stability Analysis
In this paragraph we will investigate Lyapunov sta-

bility of zero solution of system (8) under well-known
definitions [Zubov, 1973; Kharitonov, 2013] of stabil-
ity, asymptotic stability and instability of solutions of
the differential-difference systems.
Remark 2. As system (8) is linear so all solutions of

the system have the same stability properties.
Therefore we can say that system (8) as a whole is

stable, asymptotically stable or instable.
Remark 3. In general, system (8) is not uniformly

asymptotically stable [Zhabko and Chizhova, 2015a].
Theorem 1. If all roots of equations det (λE −A) =

0 and det
(
λE +A−1

∫ q

p
eλlnγdγG(γ)

)
= 0 have

negative real parts then system (8) is asymptotically
stable.
Proof. We consider a positive definite symmetric ma-

trix V as a solution of Lyapunov matrix equation

V A+ATV = −E.

Then we choose an integer k such that inequality

−∥y∥2 + 2qk · g · ∥y∥ · ∥z∥ ≤ −βyTV y

holds on the set S = {z : zTV z ≤ 2yTV y} for some

β > 0 . Here g = ∥V ∥ ·
q∫
p

∥dγG(γ)∥. We introduce a

notation v(yk) = (yk)TV yk. Then the inequality

dv(yk(t))

dt

∣∣∣∣
(12)

≤ −βv(yk(t))

holds for yk(γt) = z ∈ S. In accordance with [Razu-
mikhin, 1956] system (12) is asymptotically stable,
therefore yk(t) → 0 for t → +∞.
Let the vector function y(t, t0, φ) be a solution of sys-

tem (8). In accordance with equality (11) we have

dky(t, t0, φ)

dtk
= yk(t) → 0 for t → +∞.

Now we will show that

dk−1y(t, t0, φ)

dtk−1
= yk−1(t) → 0 for t → +∞. (13)

Using equality (10) we have

yk−1(t) +
∫ q

p
γk−1A−1dγG(γ)yk−1(γt) =

= A−1yk(t).
(14)

Let t ∈ [p1−mt0; p
−mt0] and m ≥ k . Then the func-

tion yk−1(t) can be written as a sum of solution of the

linear homogeneous system

ŷk−1(t) +

q∫
p

γk−1A−1dγG(γ)ŷk−1(γt) = 0 (15)

with initial conditions ŷk−1(t) = yk−1(t) for t ∈
[p2−kt0; p

1−kt0] and the solution of inhomogeneous
system (14) with zero initial conditions.
System (15) is asymptotically stable in accordance

with the condition of the theorem and yk(t) → 0 for
t → +∞ . Using Cauchy formula [Kharitonov, 2013]
we obtain that (13) is true. Applying this method k
times we obtain that y(t, t0, φ) → 0 for t → +∞.
Then we will give some instability conditions of sys-

tem (8), where the second term has a form

q∫
p

dγG(γ)y(γt) =
m∑
i=1

Aiy(γit) +

q∫
p

Ĝ(γ)y(γt)dγ.

Let us consider the system

ẏ(t) = Ay(t)+
m∑
i=1

Aiy(γit)+

q∫
p

Ĝ(γ)y(γt)dγ, (16)

where 0 < p ≤ γ1 < γ2 < · · · < γm ≤ q < 1 , and
matrix Ĝ(γ) is piecewise continuous for t ∈ [p, q].
Theorem 2. If matrix A has eigenvalues with the pos-

itive real parts then system (16) is instable.
Proof. At first let matrix A has not eigenvalues with

zero real parts and

det

(
A+

m∑
i=1

γs
iAi +

q∫
p

γsĜ(γ)dγ

)
̸= 0

for s = 0, 1, . . . .

Let us make the coordinates transformation
y = Sz = S

(
ẑ
z̃

)
, S−1AS = diag(A+;A−)

in order to obtain the matrix A+ with all the eigen-
values in the open right half-plane and the matrix A−
with all the eigenvalues in the open left half-plane of
the complex plane. Then system (16) may be written
in the form

ż(t) =

(
A+ 0
0 A−

)
z(t)+

+
m∑
i=1

Ãz(γit) +
q∫
p

Ĝ(γ)z(γt)dγ.

Let the matrixes V̂ and Ṽ are solutions of Lya-
punov matrix equations V̂ A+ + (A+)

T V̂ = E and
Ṽ A−+(A−)

T Ṽ = −E. Note that the quadratic forms
v1 = ẑT V̂ ẑ and v2 = z̃T Ṽ z̃ are positive definite.
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Now we introduce the auxiliary system

żk(t) =

(
A+ 0
0 A−

)
zk(t)+

+
m∑
i=1

γk
i Ãiz

k(γit) +
q∫
p

γkĜ(γ)zk(γt)dγ
(17)

and the functional

v(zk) = v1(ẑ
k(t))− v2(z̃

k(t))− d ·
m∑
i=1

t∫
γit

∥∥zk(τ)∥∥2 dτ−
−d ·

q∫
p

t∫
γt

∥∥zk(τ)∥∥2 dτdγ.
The time derivative of this functional along the solu-

tions of system (17) is

dv(zk)
dt

∣∣∣
17

= ∥zk(t)∥2 + 2(zk(t))T ·
(
V̂ 0

0 −Ṽ

)
×

×

[
m∑
i=1

γk
i Ãiz

k(γit) +
q∫
p

γkG̃(γ)zk(γt)dγ

]
+

+d ·
m∑
i=1

(γi∥zk(γit)∥2 − ∥zk(t)∥2)+

+d ·

(
q∫
p

γ∥zk(γt)∥2dγ − (q − p)∥zk(t)∥2
)
.

Define the following value

r = (∥V̂ ∥+∥Ṽ ∥)·max

{
max

i=1,...,m
∥Ãi∥; sup

γ∈[p,q]

∥G̃(γ)∥

}
.

It is easy to see that if

d =
qkr

p
and h = 1− qk

(
1 +

r(m+ q − p)

p

)

then

dv(zk)

dt

∣∣∣∣
(17)

≥ h · ∥zk(t)∥2,

Integrating the last inequality from t0 to t we obtain
that

v1(ẑ
k(t)) ≥ v2(z̃

k(t)) + d ·
m∑
i=1

t∫
γit

∥zk(τ)∥2dτ+

+d ·
q∫
p

t∫
γt

∥zk(τ)∥2dτdγ + h
t∫

t0

∥zk(τ)∥2dτ+

+v(φk) ≥ v(φk) + h
t∫

t0

∥zk(τ)∥2dτ

Now we choose k such that h > 0. Using the last
inequality and Gronuoll lemma we obtain the next in-
equality

∥zk(t)∥2 ≥ v(φk)

a
· eh

a (t−t0), t ≥ t0,

where a is the largest eigenvalue of the matrix V̂ .
Thus the solution of system (17) is unbounded under

the initial function φk such that v(φk) > 0.
In according to Lemma the corresponding solution of

system (16) is unbounded too.
Let matrix A has eigenvalue with zero real part or

det

(
A+

m∑
i=1

γs
i ·Ai +

q∫
p

γs · Ĝ(γ)dγ

)
= 0 for some

s. Using the variable transformation y = eεt · z, where
ε is sufficiently small we obtain the previous case.

5 Example
Let us consider system (7), where li = l, d̄i = d,
αi0 = c1, αi1 = c2, αiν = 0 for ν = 2, 3, . . . , N − 1
and i = 1, 2, . . . , N . An addition let h = 0 so hi1 =
e · γ · t.
Then system (7) has the form

dy

dt
= (pE + qJ)y(t) + rJy(βt) + ∆, (18)

where E is identity matrix,

y =

 y1
...
yN

 , J =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . .
0 0 0 . . . 1
1 0 0 . . . 0

 ,∆ =
v̄

l

∆1

...
∆N

 ,

p = v̄
l

(
−1 + c1 + c(x̄− d̄)

)
, q = v̄

l

(
1 + c(x̄− d̄)

)
,

r = v̄
l c2, β = 1− lγ > 0.

In accordance to Theorem 1 if pE+qJ is Hurwitz ma-
trix and all roots of equation det(pE+qJ+rβλJ) = 0
are in the open left half - plane of the complex plane
then system (18) is asymptotically stable.
Now we calculate det(λE − pE − qJ) = (λ −
p)N − qN . In accordance with the physical essence
of the model we can say that 1 + cd̄ − cx̄ > 0. It
follows that c1 < 0. The second equation has the
form (q + rβλ)N = (−p)N . By considering that
q > 0,−p = q − c1 > 0, r > 0 we have

βλ =
−q + (q − c1)

N
√
1

r
.

Since 0 < β < 1 we obtain the next inequality

|βλ| = | − q + (q − c1)
N
√
1|

r
≥ −c1

r
> 1.
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Therefore system (18) is asymptotically stable, if
c1 < 0 and 0 ≤ c2 < − c1l

v̄ .

6 Conclusion
In the paper a double-stage approach for stability anal-

ysis is propagated to the linear differential-difference
systems with linear increasing and distributed delay.
Sufficient stability and instability conditions are ob-
tained and applied for the stability analysis of the multi
– agency system. We hope these results could be basis
to construct Lyapunov-Krasovskii functionals for these
systems.
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