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Abstract
A simple but versatile approach to robust control de-

sign for linear systems with system and exogenous dis-
turbances is proposed. The efficacy of the proposed
approach is demonstrated on the benchmark example
of the F-16 aircraft model. The approach is easily im-
plemented computationally.
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1 Introduction
Feedback design for the system with exogenous dis-

turbances is one of the most important problems of the
control theory. We note the survey [Petersen, 2014] of
the most significant results within robust control the-
ory. Such issues as robust control design, including
approaches based on internal model principle, models
with structured uncertainty and robust control of sin-
gularly perturbed systems, etc. are considered in a lot
of papers; for example, the recent paper [Hien, 2014]
deals with linear time-varying systems with delay and
bounded disturbances.
The present paper is devoted to the robust feedback

synthesis in the presence of bounded exogenous distur-
bances. We use the approach proposed in [Zheleznov,
2016]; it is based on the invariant ellipsoids con-
cept [Nazin, 2007,Khlebnikov, 2011] and linear matrix
inequality technique [Boyd, 1994, Polyak, 2014, Sko-
gestad, 2007]. In this way, the obtained tasks can
be reduced to semi-definite programming and one-
dimensional optimization. Such problems can be easily
and effectively solved computationally with the use of
software including (but not limited to) freeware pack-
age cvx [Grant, 2014] and SDPT3 [Tütüncü, 2003] for
MATLAB.
The efficacy of the proposed approach is demonstrated

via a benchmark problem associated with the F-16 air-
craft model [Liao, 2002].

2 Problem Statement and Main Result
Let us consider a continuous-time linear control sys-

tem

ẋ = (A+∆A)x+Bu+Dv, x(0) = x0,

z = Cx+ Ev,
(1)

where A ∈ Rn×n, B ∈ Rn×l, C ∈ Rm×n, D ∈ Rn×p,
E ∈ Rm×p are given constant matrices; the pair (A,B)
is controllable, the pair (A,C) is detectable; x(t) ∈ Rn

is the system state, u(t) ∈ Rl is the control input, and
v(t) ∈ Rp is the external disturbance such that

v̇ = −δv +∆v(t),

where δ > 0, and ∆v(t) ∈ Rp is the unknown bounded
additive component satisfying the constraint

∥∆v(t)∥ ≤ 1 for all t ≥ 0.

We assume that the uncertainty ∆A has the structure

∆A = M∆N,

where M ∈ Rn×d, N ∈ Rd×n are given constant
matrices, and the matrix uncertainty ∆ ∈ Rd×d sat-
isfies the constraint ∥∆∥ ≤ 1. Note that all the results
presented below can be immediately extended to time-
varying matrix uncertainties ∆(t).
Here and further ∥·∥ is the Euclidean vector norm and

the spectral matrix norm, I is the identity matrix of the
appropriate dimension, and the matrix inequalities are
understood in the sense of matrix sign-definiteness.

Definition 1. The ellipsoid with the center at the origin

Ex =
{
x ∈ Rn : xTP−1x ≤ 1

}
, P ≻ 0, (2)



is called invariant for the dynamical system

ẋ = Ax+Dw, ∥w(t)∥ ≤ 1,

if from the condition x(0) ∈ Ex it follows that x(t) ∈
Ex for all t ≥ 0.

In other words, any trajectory of the system that comes
from the point lying in the ellipsoid Ex belongs to this
ellipsoid at any time.

Definition 2. The ellipsoid with the center at the origin

Ez =
{
z ∈ Rl : zT (CPCT )−1z ≤ 1

}
is said to be bounding for the dynamical system

ẋ = Ax+Dw, x(0) = x0,

z = Cx,

corresponding to the invariant ellipsoid Ex.

Accordingly, the condition x(0) ∈ Ex implies that the
system output z(t) ∈ Ez for all t ≥ 0.
Our goal is to design the linear static state feedback

u = Kx, (3)

which robustly stabilizes the system (1) for all admis-
sible disturbances v(t) and uncertainties ∆, and min-
imizes (via certain criteria) the bounding ellipsoid for
the output of the closed-loop system.
As a criterion we adopt the spectral norm of the matrix

that specifies the bounding ellipsoid, i.e., the minimal
radius of the containing ball.

Lemma 1. [Nazin, 2007] The ellipsoid (2) is invari-
ant for the dynamical system

ẋ = Ax+Dw, ∥w(t)∥ ≤ 1,

if and only if its matrix P satisfies the LMIs

AP + PAT + αP +
1

α
DDT ≼ 0, P ≻ 0,

for a certain positive scalar α.

The following theorem presents the main result of the
paper.

Theorem 1. Let P̂11, P̂22, and Ŷ be the solution of the
minimization problem

min ∥C̃P C̃T ∥ (4)

subject to the constraints

AP11 + P11A
T +BY + Y TBT + αP11 + βMMT DP22 P11N

T

∗ (α− 2δ)P22 +
1

α
I 0

∗ ∗ −βI

 ≼ 0, P ≻ 0, (5)

where

P =

(
P11 0
0 P22

)
, C̃ =

(
C E

)
,

with respect to the matrix variables P11 = PT
11 ∈

Rn×n, P22 = PT
22 ∈ Rp×p, Y ∈ Rl×n, the scalar

variable β, and the scalar parameter α > 0.
Then the matrix

C̃P̂ C̃T

defines the bounding ellipsoid for the output of sys-
tem (1) with zero initial condition, and the state feed-
back controller with matrix

K̂ = Ŷ P̂−1
11

robustly stabilizes the closed-loop system and rejects
the effects of admissible disturbances v(t).

Proof. Introducing the composite vector

g =

(
x
v

)
∈ Rn+p,

and embracing the system with feedback (3), we obtain
the system

ġ =

(
A+BK +M∆N D

0 −δI

)
︸ ︷︷ ︸

Ã

g +

(
0 0
0 I

)
︸ ︷︷ ︸

D̃

(
0
∆v

)
︸ ︷︷ ︸

ṽ

,

z =
(
C E

)︸ ︷︷ ︸
C̃

g.

(6)



Taking into account ṽ =

(
0
∆v

)
, we have

∥ṽ(t)∥ =
∥∥∥( 0

∆v

)∥∥∥ ≤ 1, ∀t ≥ 0.

Therefore, Lemma 1 is applicable to system (6); i.e.,
the matrix P ≻ 0 of the invariant ellipsoid satisfies the
LMI

ÃP + PÃT + αP +
1

α
D̃D̃T ≼ 0. (7)

Imposing a simplifying assumption, we will seek the
matrix P = PT ∈ R(n+p)×(n+p) in the block-diagonal
form

P =

(
P11 0
0 P22

)
, P11 = PT

11 ∈ Rn×n.

Then we rewrite (7) as

(
A+BK +M∆N D

0 −δI

)(
P11 0
0 P22

)
+(

P11 0
0 P22

)(
(A+BK)T +NT∆TMT 0

DT −δI

)
+

α

(
P11 0
0 P22

)
+

1

α

(
0 0
0 I

)
≼ 0

or equivalently,
AP11 + P11A

T+
BKP11 + P11K

TBT+
αP11+

M∆NP11+
P11N

T∆TMT

DP22

∗ (α− 2δ)P22 +
1
αI

 ≼ 0.

(8)
Condition (8) can be reformulated as


AP11 + P11A

T+
BKP11 + P11K

TBT+
αP11

DP22

∗ (α− 2δ)P22 +
1
αI

+

(
M
0

)
∆
(
NP11 0

)
+

(
P11N

T

0

)
∆T

(
MT 0

)
≼ 0.

(9)

By Petersen’s lemma [Petersen, 1987], condition (9)
is fulfilled for all admissible uncertainties ∆ if there
exists β such that
AP11 + P11A

T+
BKP11+

P11K
TBT+

αP11 + βMMT

DP22 P11N
T

∗ (α− 2δ)P22 +
1
αI 0

∗ ∗ −βI

≼0.

Introducing the auxiliary variable Y = KP11, we ar-
rive at (5).
As the invariant ellipsoid for the state g of system (6)

is specified by the matrix P , the bounding ellipsoid for
the output z is specified by the matrix C̃P C̃T due to
Definition 2. The proof is complete.

Remark 1. The problem (4)–(5) is a semi-definite pro-
gramming with 1D optimization over the scalar param-
eter α. Such a procedure can be easily accomplished
in MATLAB, e.g., by using the toolbox cvx.

Remark 2. Theorem 1 establishes a sufficient condi-
tion due to the simplifying assumption of the block-
diagonal form of the matrix P . Obtaining an analogue
of Theorem 1 for general-form matrices P remains an
open problem.

It is natural to require the following constraint on the
control input:

∥u(t)∥ ≤ µ ∀t ≥ 0 (10)

along the trajectory for a given level µ. The follow-
ing lemma states a sufficient condition for the control
bound (10). It is formulated as a linear matrix inequal-
ity in the matrix variables P11 and Y in Theorem 1.

Lemma 2. Let the matrices P11 ≻ 0 and Y satisfy in-
equalities (5). Then the LMI

(
P11 Y T

Y µ2I

)
≽ 0 (11)

guarantees the satisfaction of constraint (10) along the
trajectory of the system (6) with controller (3).

Proof. By (3), constraint (10) can be represented in the
form

gT
(
KTK 0
0 0

)
g ≤ µ2. (12)

Consider the ellipsoid

Eg =
{
g ∈ Rn+p : gTP−1g ≤ 1

}
, P ≻ 0,

specified by the matrix P which satisfies condition (5),
and impose the following condition:

gT
(
KTK 0
0 0

)
g ≤ µ2 ∀g : gTP−1g ≤ 1. (13)

Clearly, the fulfillment of (13) is equivalent to

1

µ2

(
KTK 0
0 0

)
≼ P−1 =

(
P−1
11 0
0 P−1

22

)



or

1

µ2
KTK ≼ P−1

11 .

Since K = Y P−1
11 , this matrix inequality takes the

form

1

µ2
P−1
11 Y TY P−1

11 ≼ P−1
11 .

Pre- and post-multiplying this inequality by P11 and
using the Schur lemma, we complete the proof.

Finally, Theorem 1 is formulated for zero initial con-
dition. Otherwise, we should require

gT0 P
−1g0 ≤ 1

or by the Schur lemma(
1 gT0
g0 P

)
≽ 0. (14)

Therefore, Theorem 1 modifies as follows. Linear ma-
trix inequalities (11) and (14) are to be attached to in-
equalities (5).

3 Example
We demonstrate the efficacy of proposed approach via

the well-known benchmark of the F-16 aircraft model,
see [17], with scalar uncertainty and the matrices A, B,
C, D, E, M , N (see below).
Applying the Theorem 1 for

δ = 0.03, µ = 10,

we obtain the matrix C̃P̂ C̃T of the bounding ellipsoid,
and the gain matrix K̂:

A =


−0.0153 0.0481 −5.9420 0.0021 0 0
−0.0910 −0.9568 138.3608 0.0163 0 0
0.0002 0.0046 −1.0220 −0.0005 0 −0.0029

0 0 0 −0.2804 6.2667 −151.1435
0 0 0.0003 −0.1821 −3.4192 0.6401
0 0 0.0025 0.0454 −0.0304 −0.4535

 , M = NT =


0
0
0
0
0
1

 ,

B =


0.0239 0.0239 0.0250 0.0250 0
−0.1722 −0.1722 −0.1799 −0.1799 0
−0.0873 −0.0873 −0.0076 −0.0076 0
−0.3149 0.3149 0.0233 −0.0233 0.1205
−0.1892 0.1892 −0.3464 0.3464 0.1237
−0.1678 0.1678 −0.0147 0.0147 −0.0587

 , D =


0.0481
−0.9568
0.0046

0
0
0

 , E =


0
0
0
0
1

 ,

C =


0 0 57.2958 0 0 0
0 0 0 0 57.2468 2.3696
0 0 0 0 2.3696 57.2468

−0.0155 0.3756 0 0 0 0
0 0 0 0.03760 0 0

 ,

C̃P̂ C̃T =


1195.7274 2.5029 −4.4952 −2574.4520 2.0365

∗ 6439.0260 −957.4741 2.7459 −233.6640
∗ ∗ 597.9295 12.2821 −8.4607
∗ ∗ ∗ 6072.4507 −7.5914
∗ ∗ ∗ ∗ 2540.4079

 ,

K̂ =


3.4781 0.2734 38.7728 −0.1303 −1.3647 14.3270
−3.6517 −0.0999 35.3838 0.1309 1.3704 −14.4680
−17.9018 −0.8690 5.2321 0.4505 4.2587 13.0617
17.8935 1.0104 22.7458 −0.4674 −4.2859 −13.1402
−17.3187 −0.9159 −10.1840 −0.3547 3.7430 3.7302

 .
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Figure 1. The 2D projections of the bounding ellipsoid and the out-
put trajectory on the plane (z1, z2).
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Figure 2. The 2D projections of the bounding ellipsoid and the out-
put trajectory on the plane (z3, z4).

Fig. 1 depicts the projections of the bounding ellip-
soid and the output trajectory on the plane defined by
axes z1 and z2 with

∆v(t) = sign sin t, ∆(t) ≡ 1,

and the initial point

x0 =


−7.8948
153.6350
−0.4741
2.2227
−0.6997
0.2135

 .

Fig. 2 depicts the projections of the bounding ellipsoid
and the output trajectory on the plane defined by the
axes z3 and z4.

4 Conclusion
A simple but versatile approach to robust control de-

sign for linear systems with system and exogenous dis-
turbances is proposed. The efficacy of the proposed
approach is demonstrated via the benchmark example
of the F-16 aircraft model. The approach is easily im-
plemented computationally.
The authors plan to adopt the approach to discrete-

time systems and to tracking systems.
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