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Abstract
The problem of localization of attractor of “solar

wind-magnetosphere-ionosphere” (WINDMI) three-
dimensional model has stimulated further development
of method of conical nets. In the paper the development
of this method is carried out and analytical localization
of the attractor of WINDMI model is performed.
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1 Introduction
In the present paper we consider the localization prob-

lem of attractor of 3-dimensional simplified model
[Spencer et al., 2006] of 6-dimensional system [Horton
et al., 2001], which is used for analysis of geomagnetic
storms and substorms and modeling the energy flow
through the solar wind-magnetosphere-ionosphere sys-
tem (WINDMI) system. The study of attractors of such
systems is important task because it allows to under-
stand the possible magnetospheric plasma states [Smith
et al., 2000].
The problem of attractor localization has stimulated

the development of method of positively invariant cone
grids (which is often used for study of control systems)
[Leonov et al., 19961; Yakubovich et al., 2004; Leonov
et al., 19962; Leonov, 2006; Leonov et al., 2009] for
its study. Further development of this method is car-
ried out and analytical estimates of the attractor of the
model are obtained.

2 Further development of the method of positively
invariant cone grids

Consider a system

dx

dt
= Px+ qφ(r∗x), x ∈ Rn. (1)

Here P is a constant degenerate (n× n)-matrix, q and
r are n-dimensional vectors, ∗ is an operation of trans-
position, and φ(σ) is a differentiable scalar function
satisfying the following sector conditions

φ(σ) < µ(σ − α), ∀σ ≥ α, (2)

µ(σ − β) < φ(σ), ∀σ ≤ β, (3)

where µ is a certain positive number, α < β.
Let the pair (P, q) be totally controllable, the pair
(P, r) be totally observable, and system (1) have a
unique equilibrium.
Theorem. Suppose, r∗q ≤ 0, there exists a number
λ > 0 such that the matrix P + λT has (n− 1) eigen-
values with negative real parts, and the following in-
equality

ReW (iω−λ)+µ|W (iω−λ)|2 ≤ 0, ∀ω ∈ R1 (4)

is satisfied. Then for any solution x(t) of system (1)
there exists a number T such that

r∗x(t) ∈ (α, β), ∀t > T. (5)
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Here W (p) = r∗(P −pI)−1q is a transfer function of
system (1), I is a unit (n× n)-matrix.
We give a scheme of the proof of Theorem 1. Con-

dition (4) implies the existence of symmetric n × n-
matrix H such that for it there are valid the following
conditions (the detailed proof of this fact can be found
in [Leonov et al., 19961]):
1) the matrix H has one negative and (n− 1) positive

eigenvalues,
2) for all z ∈ Rn and ξ ∈ R1 the inequality

2z∗H[(P + λI)z + qξ] + r∗z(r∗z − µ−1ξ) ≤ 0 (6)

is satisfied. Note that relation (6) yields the relation

2Hq = µ−1r.

Then from Theorem 1 it follows that r∗H−1r =
2µr∗q ≤ 0 and, therefore, [Leonov et al., 19961] we
have

z∗Hz ≥ 0, ∀z ∈ {z∗r = 0}. (7)

Let be d ∈ Rn such that d ̸= 0 and Pd = 0, r∗d = 1.
Then relation (6) implies that d∗Hd < 0.
Consider now the Lyapunov-type function

V1(x) = V (x− αd) = (x− αd)∗H(x− αd),

V2(x) = V (x− βd) = (x− βd)∗H(x− βd).

From relations (2), (3), (6) it follows that

V̇1(x(t)) + 2λV1(x(t)) < 0 for r∗x(t) > α,

V̇2(x(t)) + 2λV2(x(t)) < 0 for r∗x(t) < β.

These inequalities can be rewritten in the following
form

V1(x(t)) ≤ V1(x(0))e
−2λt∀t ≥ 0 : r∗x(t) > α,

V2(x(t)) ≤ V2(x(0))e
−2λt∀t ≥ 0 : r∗x(t) < β.

(8)

In this case relation (7) implies positive invariance of
the sets [Leonov et al., 19961]

Ω1(α) = {(x− αd)∗H(x− αd) < 0, r∗x ≥ α},
Ω2(β) = {(x− βd)∗H(x− βd) < 0, r∗x ≤ β}.

Then it is easily seen that the closures Ω1(α), Ω2(β)
are also positively invariant.
In this case from (8) we have that the boundaries
∂Ω1(α) and ∂Ω2(β) do not involve whole trajectories

Figure 1. Cone grids.

and they are almost everywhere transverse to vector
field of system (1). In the phase space of system (1)
these boundaries make up a continuum set of surfaces
(conical net), which is shown in Fig. 1.
Let us fix x(0) and determine α0 and β0 such that

x(0) ∈ Ω1(α0) ∩ Ω2(β0).

Then consider sets Ω1(ν) and Ω2(µ) where ν ∈
(α, α0) and µ ∈ (β, β0). Boundaries ∂Ω1(ν) and
∂Ω2(µ) form continual contactless surfaces in phase
space (Fig. 1). Hence there is time T > 0 such that for
t ≥ T for solution x(t) the following inclusion

x(t) ∈ Ω1(α) ∩ Ω2(β).

is valid. This inclusion proofs relation (5).
In increasing time t the structure constructed “hud-

dles” any solution in the set Ω1(α)∩Ω2(β). The latter
proves the assertion of theorem.
Note that the estimate obtained cannot be improved

in the considered class of nonlinearities since if for all
σ ∈ (α, β) φ(σ) = 0, then for ν ∈ (α, β) x = νd is a
stationary solution of system.

3 WINDMI system
Consider a system

...
x + bẍ+ c1ẋ+ φ(x) = 0,

φ(x) = (c2 + c3tanh(x)),
(9)

where

tanh(x) =
ex − e−x

ex + e−x
.

System (9) is 3-dimensional simplified model of 6-
dimensional system (obtained in [Horton et al., 2001])
used for analysis of geomagnetic storms and substorms
[Spencer et al., 2006] and modeling the energy flow
through the solar wind-magnetosphere-ionosphere sys-
tem.
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System (9) is called a simplified WINDMI model. As
in [Horton et al., 2001], the parameters of (9), by as-
sumption, are the following

b > 0, c1 > 0, c3 > c2 > 0.

These parameters are given in the dimensionless form
and computed by the formulas from [Horton et al.,
2001]. Some dynamical features of model (9) (such as
the graphs of the largest Lyapunov exponent; Lyapunov
dimension versus the solar wind dynamo voltage; the
bifurcation diagram) are shown in [Horton et al., 2001].
Our aim is to study a location of invariant sets of sim-

plified WINDMI model.
Let us apply the theory, developed above, to investi-

gation of equation (9). In this case the maximal coeffi-
cient µ can be computed [Yakubovich et al., 2004] by
the formula

µ =


b

3

(
c1 −

2

9
b2
)
, b2 ≤ 3c1

b

3

(
c1 −

2

9
b2
)
+ 2

(
b2

9
− c1

3

)3/2

, b2 ≥ 3c1

Determine a point x0 > 0 such that φ′(x0) = µ,

x0 = arccosh

√
c3
µ

for
c3
µ

> 1.

Taking into account the relation φ′(x0) = φ′(−x0) =
µ, we obtain restrictions (2) and (3) on the nonlinearity
φ(x) (Fig. 2). Denote

α0 = −φ(x0)

µ
+ x0, −φ(−x0)

µ
− x0 = β0.

Then by (2), (3), and (5) we obtain

α0 ≤ lim
t→+∞

inf x(t), lim
t→+∞

supx(t) ≤ β0. (10)

For the estimation of ẋ and ẍ we remark that by the
conditions of positiveness of coefficients the character-
istic polynomial of linear part of equation (9) has roots
to the left of imaginary axis and the nonlinearity φ(x)
is bounded:

|φ(x)| ≤ c2 + c3.

In this case, using Cauchy formula, we can obtain
[Cesari, 1959; Leonov, 2001; Leonov and Kuznetsov,
2007] the following estimates for |ẋ(t)|:

yatt=


lim

t→+∞
sup |ẋ(t)| ≤ c2 + c3

c1
, b2 ≥ 4c1,

lim
t→+∞

sup |ẋ(t)| ≤ 2(c2 + c3)

b
√
c1 − b2

4

, b2 < 4c1,

and for |ẍ(t)|:

lim
t→+∞

sup |ẍ(t)| ≤ (c1yatt + c2 + c3)

b
.

These estimates together with estimate (10) for |x(t)|
localize an attractor of equation (9).

Figure 2. Estimation of nonlinearity.

Conclusion
Application of frequency methods allows us to fur-

ther develop this area. In particular, for further revi-
sion of the criteria one can consider Lyapunov func-
tions of the quadratic form plus integral of the nonlin-
earity. In this case, instead of analogues of the circular
criterion, it is possible to obtain analogues of Popov
criterion [Leonov et al., 19961; Leonov et al., 19962].
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