
PHYSCON 2017, Florence, Italy, 17–19 July, 2017

SYNCHRONIZATION OF TWO HINDMARSH-ROSE
NEURONS WITH THRESHOLDS COUPLING

F. M. Caballero-Flores
División de Matemáticas Aplicadas
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Abstract
The Hindmarsh-Rose (HR) dynamical system is a

well-known model of neuronal activity. This work ad-
dresses chaotic dynamic synchronization of two HR
neurons via coupling based on the thresholds. The
coupling is unidirectional and it is carried out by an
underdamped signal, which activates every time that
the master system crosses the threshold represented by
means of a Poincaré plane. A novel master-slave sys-
tem is presented, and the synchronization between the
systems is detected via the auxiliary system approach.
Numerical explorations verify such synchronization
where the parameters of two HR neurons might differ.
The result gives away a fundamental question on the
valid interpretation of unidirectional links, their poten-
tial use, and if such chaotic synchronization is an active
principle of biological neurons.
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1 Introduction
In neuroscience, experimental evidence indicates that

neuronal synchronization plays an important role in
processing biological information in the brain [Purves
et. al., 2004], e.g. during the processing of olfactory
information in the olfactory bulb [Desmaisons, Vin-
cent and Lledo, 1999]. Furthermore, chaos has been
found from neuronal network dynamics to macroscop-
ical electroencephalography (EEG) both in theory and
experimentally [Hrg, 2013; Nguyen and Hong, 2013;

Makarenko and Llinás, 2013]. It is typically real-
ized that synchronization of neuronal activities featured
by chaotic synchronization is important for memory,
learning, motion control and diseases such as epilepsy
[Babloyantz and Destexhe, 1986]. Moreover, it plays
an important role in the realization of associative mem-
ory, image segmentation and binding [Tsuda, 2001]. In
order to ease the neural synchronization study, typical
dynamical models of the electrical activity can be im-
plemented, e.g. the Hindmarsh-Rose neuronal model.

The rich and interesting nonlinear dynamical be-
haviour of the Hindmarsh-Rose (HR) is one of the most
popular and studied low-dimensional neuronal model
in neurological sciences [Dtchetgnia Djeundam et. al.,
2013]. In this model, the action potential of a single
neuron fires due to a sufficient stimulus (named thresh-
old), induces several behaviour modes reflecting the
daintiness activity of a genuine neuron: a succession
of a rest state, firing action potential, and deactivation
period. Also the system exhibits chaos for an appropri-
ate choice of its intrinsic parameters [Storace, Daniele
and Lange, 2008]. In nature, the action potential of a
neuron is propagated as a wave of depolarization, fol-
lowed closely by a corresponding wave of repolariza-
tion. When the membrane has just completed this cy-
cle, it is in the refractory state for some milliseconds
[Purves et. al., 2004]. This delay prevents the action
potential from spreading “backward” toward the body
cell (i.e., antidromic impulse conduction), and ensures
that under normal conditions the impulse conduction
is unidirectional [Brodal, 2016]. Therefore, the HR
model can be used in the simulation of the brain activity
to investigate the chaotic synchronization. The idea of
synchronization of two chaotic systems with common



driving signals and different regular coupling schemes,
was described by [Pecora et. al., 1997]. The method
is based on linking a trajectory of the master system to
the same values of the slave one.
This work proposes a mechanism on how to couple

two HR neurons and synchronize its electrical activity;
to carry out this, the detection of a threshold of the elec-
trical activity of a master neuron in regimen chaotic via
Poicaré plane was implemented as previously defined
by [Ontañón-Garcı́a et. al., 2013]. The idea is to gen-
erate a driving signal which is activated in discrete time
events caused by the crossing of a specific threshold by
some master neuron with a previously defined Poincaré
plane.
The rest of this article is organized as follows: In

the Section 2, the Hindmarsh-Rose neuronal model is
briefly introduced. Section 3, the dynamical behaviour
of a single Hindmarsh-Rose neuron and its bifurcation
diagram are presented. In Section 4, it is proposed the
tresholds coupling based on Poincaré plane. Section
5, contains chaotic synchonization of two HR neurons
threshold coupled and numerical results about master-
slave interconnection. Finally, conclusions are made in
Section 6.

2 The Hindsmarsh-Rose neuronal model
In nonlinear dynamics and neuroscience, the

Hindsmarsh-Rose neuronal model is a simplified
version of the physiologically realistic model pro-
posed by Hodgkin and Huxley [Hodgkin and Huxley,
1952] and a modification of the FitzHugh-Nagumo
[FitzHugh, 1961] equations. It was originally proposed
to model the firing synchronization of two snail
neurons [Coombes and Bressloff, 2005]. The HR
neuronal model is given by

Ẋ =

y − x3 + bx2 + I − z
1− dx2 − y

r(s(x− xr)− z)

 , (1)

where X = [x, y, z]T ∈ R3 is the vector of the state
variables. The relevant state variable x(t) is known
as the membrane potential, y(t) (spiking variable) is
the recovery variable associated with the fast current of
Na+ or K+ ions, z(t) (bursting variable) is the adap-
tation current associated with the slow current of, for
instance, Ca2+ ions. I ∈ R+

0 or I(t) is the external
current injected into the neuron, while b ∈ R+ repre-
sents the qualitative behaviour of the model. r ∈ R+

is a small parameter (0 < r � 1) that governs the
bursting behaviour, xr ∈ R is the x-coordinate of the
point of stable equilibrium in the event that an external
current is not applied and d ∈ R+. s ∈ R+ governs
adaptation: smaller values of s ≈ 1 result in fast spik-
ing behaviour [Hindmarsh and Rose, 1984].

3 The dynamics of a single HR neuron
For certain values of the parameters r and I , various

dynamic behaviours of the membrane potential x(t)
can be observed as shown in Figure 1, where the variety
of dynamical behaviours, one may find some types:

1. Resting state: the stimulus to the neuron is below
a certain threshold and the response reaches a sta-
tionary regime as shown in Figure 1(a).

2. Tonic spiking: the response is made up a regular
series of equally spaced spikes as shown in Fig-
ure 1(b).

3. Regular bursting: the response is made up of
groups of two or more spikes (called burst) sep-
arated by periods of inactivity as shown in Fig-
ure 1(c).

4. Chaotic bursting: the response is made up of an
aperiodic series of burst as shown in Figure 1(d).

3.1 The bifurcation diagram
In order to identify the chaotic regions of the HR neu-

ron, was plotted the bifurcation diagram as a function
of r with different bursting periods. So it is define a
Poincaré map as follows:

Definition 3.1. [Perko, 2013; Starke et. al., 2010]
Consider the flow φ(t) as the solution of the system
given by equation (1). A local cross section, the
Poincaré section, Σ ∈ R2 is taken such that the flow
φ(t) is everywhere transverse to it. Like a section
through the unique point X∗ = (x∗, y∗, z∗)T =
((max(x(t)) + min(x(t)))/2, (max(y(t)) +
min(y(t)))/2, (max(z(t)) + min(z(t)))/2)T in
the middle of attractor AX of the system (1) to
guarantee AX ∩ Σ 6= ∅, is chosen:

Σ = {X ∈ R3|N · (X −X∗) = 0}, (2)

where N = [n1, n2, n3]T ∈ R3 is the nonzero normal
vector. Let p1 be the point on Σ where φ(t) intersects
with Σ, then the Poincaré map P : Σ → Σ. Thus
starting at point p1 on Σ, the Poincaré map will define
the next intersection p2 of the flow φ(t) with Σ. This is
called the first return map. Starting from point p2, the
second intersection of the flow with Σ gives the point
p3 and so on. The complete map is thus defined as

P : pi → pi+1, i = 1, . . . ,∞. (3)

Hence, the Σ crosses the attractor Ax, generating the
points {p1, p2, p3, . . .} ∈ Σ at each crossing event
and therefore specify the following time series ∆X0

=
{t1, t2, t3, · · · } ∈ R+

0 corresponding to each crossing
time event.

In this study, the values b = 3, d = 5, I = 3, s = 4
and xr = −8/5 are used. The bifurcation diagram
shown in Figure 2, will be obtained by calculating the
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Figure 1: Dynamic behaviours of a single Hindsmarsh-
Rose neuron: (a) Resting state with r = 0.01325 and
I = 0. (b) Tonic spiking with r = 0.045 and I = 3.
(c) Regular bursting with r = 0.011 and I = 3. (d)
Chaotic bursting with r = 0.01325 and I = 3.

intersections of the trajectories of the system (1) with a
plane Σ = {(x, y, z) ∈ R3|x + y − 3 = 0} satisfying
Definition 3.1. The Figure 2 shows the transition from
simple bursting to complex bursting oscillation via in-
termittent chaos as r decreased, according by [Fan and
Holden, 1993] for r ≥ 0.016 and 0 < r ≤ 0.0045,

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
2.6

2.7

2.8

2.9

3

3.1

3.2

2

1
4

3

4

5

6

18

Figure 2: The bifurcation diagram of a single HR neu-
ron model with I = 3.

the HR neuronal model exhibits continuous periodic
spiking, marked with red numbers some of the periodic
states of the system, e.g. when r = 0.001 the burst-
ing have period 18. The chaotic behaviour is found
in the regions r = 0.00475, 0.00575 < r < 0.0065,
0.00775 < r < 0.0095 and 0.01275 < r < 0.016.

4 Thresholds coupling of two HR neurons
The threshold associated to the master system, given

by the HR neuron (4), will be defined as a Poincaré
section in the phase space of the master and slave HR
neurons with unidirectional coupling, where neurons
interact only when an orbit of the master HR neuron
crosses this section. So, consider the following master-
slave systems representation of the HR neuron (1):
Master neuron:

Ẋm = F (Xm) =

ym − x3m + 3x2m + I − zm
1− 5x2m − ym

rm
(
4(xm + 8

5 )− zm
)
 .

(4)
Slave neuron:

Ẋs = G(Xm,Xs) = F (Xs) + kH(Xm,Xs), (5)

where the state vectors are represented by Xm =
[xm, ym, zm]T ∈ R3 and Xs = [xs, ys, zs]

T ∈ R3

with corresponding functions F (Xm) : R3 → R3 for
the master system and G(Xm,Xs) : R3 × R3 →
R3 for the slave system, k is the coupling strength
and the coupling based on thresholds correspond to
H(Xm,Xs) : R3 ×R3 → R3. Which is given by:

H(Xm,Xs) = S(Xm −Xs). (6)

Where S is a scalar function which is defined in a given
interval and is determined as follows:

S(t, ti) =

{
e−τ(t−ti) cos(t− ti) , if t ∈ [ti, ti+1)

0 , otherwise
, (7)



where ti ∈ ∆X0 from Definition 3.1, τ ∈ R+ repre-
sents an underdamping factor which modulate the mag-
nitude of the signal and its frequency. Note that for a
value of t = ti, the coupling starts.
Thus, having this in consideration it is define finally

the thresholds coupling:

Definition 4.1. Let X0 be a point in the phase space
of the master system (4) and ∆X0

= {t1, t2, . . .} be
a time series comprised of the events generated each
time that the trajectory of the master system with initial
condition X0 crosses the plane Σ according the Defi-
nition 3.1. If the coupling H(Xm,Xs) from equation
(6) depends on the time series ∆X0

then the coupling
is called a threshold coupling.

5 Chaotic synchonization of two HR neurons
threshold coupled

In this section, synchronization of two threshold cou-
pled chaotic HR neurons with different parameters that
governs the bursting bahaviour is presented, the syn-
chronization is defines as follows:

Definition 5.1. [Zhang, Liu and Ma, 2007] It is said
that the systems (4) and (5) are generalized syn-
chronous (GS) with respect to the vector map Φ :
R3 → R3, if there exist a function H(Xm,Xs) from
equation (6) such that the solutions Xm(t) and Xs(t)
of systems (4) and (5), respectively, satisfy the follow-
ing property:

lim
t→∞

‖Xs(t)− Φ(Xm(t))‖ = 0, (8)

where the map Φ is an arbitrary continuously differen-
tiable function. Note that if Φ is the identity function,
then the systems (4) and (5) are completely synchro-
nized.

With the purpose of analysis and detection of GS be-
tween the master and the slave HR neurons, the aux-
iliary system approach was defined by [Abarbanel,
Rulkov and Sushchik, 1996]. Here it is considered an
auxiliary system identical to the slave system (5), and
coupled in the same way to the system (4), but with
different set of initial conditions Xs(0) 6= Xaux(0).
For practical purposes is defined as the synchroniza-
tion error between system (5) and the auxiliary system,
as follows:

ξ(t) = Xs(t)−Xaux(t), (9)

where ξ(t) = [ξx, ξy, ξz]
T : R3 → R3, so ξx = xs −

xaux, ξy = ys − yaux and ξz = zs − zaux.
The synchronization can be easily detected by this

method, if the coupled systems present only one basin
of attraction (see [Ontañón-Garcı́a et. al., 2013]) and
satisfy the asymptotic condition (8) from Definition
5.1.
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Figure 3: Time evolution of the master neuron (4) and
slave neuron (5), with solid line and green dashed line,
respectively.

If there exists only one basin of attraction and GS is
ensured, limt→∞ ‖ξ(t)‖ = 0 is satisfied for any initial
stateXs(0) andXaux(0).

5.1 Numerical simulations
In this section, numerical simulations are performed

to synthesize the proposed strategy. The same set
of model parameters as provided in Section 3.1, but
different values of the parameter r, i.e., for the master
HR neuron rm = 0.01325 and the slave HR neuron
rs = 0.008 (both in chaotic regimen). The selected
initial conditions of the master, slave and auxiliary neu-
rons are set as Xm(0) = [−0.2984, 0.0001, 2.5915]T ,
Xs(0) = [−1.4084,−8.992, 2.4947]T and
Xaux(0) = [−1.4913,−10.108, 2.6267]T , re-
spectively, are used throughout the section.
In order to meet the requirements of plane Σ from

the Definition 3.1, the parameters take following val-
ues X∗ = [0.2406,−3.6525, 2.9169]T with N =
[1, 0, 0]T , and so the condition AX ∩ Σ 6= ∅ is full-
filled. This location has been chosen in order to de-
tect the membrane potential (threshold) of the master
HR neuron (4). Figure 3 depicts the xm and xs states
of the coupled master and slave HR neurons, repre-
sented as continuous blue line and dashed green line,
respectively, the black dashed-dot line marks the plane
Σ, and each crossing event is marked with red aster-
isks. When the coupling signal from equation (7) is
zero because no exist crosses with a Poicaré plane (i.e.,
AX ∩ Σ = ∅), the slave HR neuron oscillates chaot-
ically independently. Each crossing event is marked
with a red asterisk. So the time series ∆X0

contains
each crossing event that satisfies ẋm > 0. Figure 4
depicts the signal of equation (5) along with the cross-
ing events. The coupling strength and external applied
current are k = 5 and I = 3, respectively.
The results of the computer simulations at τ = 0.9 and
k = 5 are presented in Figure 5. Figure 5(a) and Fig-
ure 5(b) show the projections of the attractor from its
phase space onto the planes (xs, ys) and (xs, xaux), re-
spectively. One can see from plot shown in Figure 5(b)
that the manifold Xs = Xaux, the slave HR neu-
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Figure 4: Coupling thresholds function (7) in solid line
for τ = 0.9 and k = 5. Marked with red asterisk the
events ti of each intersection of the master system with
the plane Σ according the Definition 4.1.

ron and the auxiliary system are completely synchro-
nized, and therefore the manifold of synchronized mo-
tions specified by Xs = Φ(Xm), using the auxiliary
system approach, the master and the slave HR neurons
with chaotic regimen are generalized synchronous sat-
isfy Definition 5.1. Also, corroborated with the syn-
chronization error given by equation (9), between the
slave neuron (5) and system auxiliary, which converge
asymptotically to zero shown in Figure 5(c).
The (ys, yaux) and (zs, zaux) projections of the attrac-

tor look identical to the one in Figure 5(b) and were not
included in the article in order to avoid redundancy.

6 Conclusion
This article investigates the synchronization states of

two HR neurons coupled by thresholds. The synchro-
nization behaviour of the Hindmarsh-Rose neurons is
investigated and is an important topic to consider be-
cause due to this phenomenon, the neural processing is
carried out in real biological systems. When HR neu-
rons are synchronized in the generalized sense. The
motion in the combined phase space of the master HR
neuron and the slave HR neuron collapses in a stable
way onto a manifold dictated by the synchronization
relationship Xs(t) = Φ(Xm(t)), and when the orbits
reach this synchronization manifold they remain there.
Also, the synchronization between slave and auxiliary
system HR neurons is complete. The validity of this
approach is verified numerically.
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