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Abstract: A condition which ensures the absence of periodic orbits for nonsmooth
dynamical systems is presented. A connection to methods for estimating the Hausdorff
dimension is emphasized. For a class of hybrid systems described by a linear system
with relay feedback the conditions are presented in the form of linear matrix
inequalities.
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Discontinuous dynamical systems and, particu-
larly, relay systems have attracted considerable
attention over the last decades. While the mathe-
matics of smooth dynamical systems still produces
new and interesting discoveries, in applied disci-
plines it has been realized that for many applica-
tions discontinuities should be taken into account.
For example, discontinuities can be used to sim-
plify modeling of friction in mechanical systems,
to design disturbance tolerant sliding mode con-
trollers, to deal with a switching control strategy
in manufacturing systems, and so on. A hot topic
in research in the control community is formed by
the class of so called hybrid dynamical systems,
which combine continuous and discrete dynam-
ics (Filippov, 1988; Utkin, 1992; Tsypkin, 1984;
Clarke et. al., 1998; Matveev & Savkin, 2000).

The main purpose of this paper is to present
a possible generalization of the Bendixson re-
sult to arbitrary dimension taking into account
the possible discontinuity of the right hand side.
There are several higher dimensional generaliza-
tions of this criterion, see, e.g. (Smith, 1981; Mul-
downey, 1990; Li & Muldowny, 1993; Li & Mul-
downy, 1996; Starkov, 2005). Muldowney and Li
(Muldowney, 1990; Li & Muldowny, 1993; Li &
Muldowny, 1996) used an approach based on com-
pound matrices to prove a negative Bendixson-
like criterion. In this paper we investigate this
question by a method which allows to estimate
the Hausdorff dimension of invariant compact
sets (Douady and Osterlé, 1980; Smith, 1986;
Témam, 1988; Leonov et. al., 1996; Pogrom-
sky and Nijmeijer, 2000; Reitmann and Schn-
abel, 2000; Booichenko et. al., 2005).



The paper is organized as follows. In Section II
we present some necessary background material.
Section III contains some result on the estima-
tion of the Hausdorff dimension of invariant sets.
Based on these results in Section IV we present a
new version of a generalized Bendixson’s criterion.
Particular attention is then drawn to LMI-based
results for linear systems with relay feedback.

1. HAUSDORFF DIMENSION

Consider a compact subset K of Rn. Given d ≥ 0,
ε > 0, consider a covering of K by open spheres
Bi with radii ri ≤ ε. Denote by

µ(K, d, ε) = inf
∑

i

rd
i (1)

the d-measured volume of covering of the set K.
Here the infimum is calculated over all finite ε-
coverings of K. There exists a limit, which may
be infinite,

µd(K) := sup
ε>0

µ(K, d, ε) = lim
ε→0

µ(K, d, ε).

Definition 1. The measure µd is called the Haus-
dorff d-measure.

Some properties of the measure µd can be summa-
rized as follows. There exists a single value d = d∗,
such that for all d < d∗, µd(K) = +∞ and for all
d > d∗, µd(K) = 0, with

d∗ = inf{d : µd(K) = 0} = sup{d : µd(K) = +∞}.
(see Proposition 5.3.2 in (Leonov et. al., 1996)).

Definition 2. The value d∗ is called the Hausdorff
dimension of the set K.

In the sequel, we will use the notation dimH K for
the Hausdorff dimension of the set K.

For the control community the notions of Haus-
dorff measure and Hausdorff dimension are not
common and we like to clarify the above defini-
tions.

Suppose we have a two-dimensional bounded sur-
face S with area m(S). We cover this surface by
open spheres as required in the definition of the

Hausdorff measure. Then, for d = 1 and d = 3 we
have

µ1(S) = lim
ε→0

µ(S, 1, ε) = +∞,

µ3(S) = lim
ε→0

µ(S, 3, ε) = 0,

while for d = 2 we have

µ2(S) =
m(S)

π

This example illustrates the behavior of µd(K) for
a given K as a function of d. Namely, for values
of d less than dimHK, µd(K) is infinite and for
all values of d greater than dimHK µd(K) is zero
(see Proposition 5.3.2 in (Leonov et. al., 1996)).

2. UPPER ESTIMATES FOR THE
HAUSDORFF DIMENSION OF INVARIANT

COMPACT SETS

Consider a system of differential equations

ẋ = f(x), x ∈ Ω ⊂ Rn, x0 ∈ Ω (2)

where f : Ω → Rn is a (possibly) discontinu-
ous vector field defined on some open positively
invariant set Ω, and which satisfies conditions
guaranteeing the existence of solutions x(t, x0) in
Ω in some reasonable sense, that is, if the function
f is discontinuous and satisfies some mild regular-
ity assumptions, one can construct a set-valued
function f according to numerous possible defi-
nitions (e.g., Filippov convex definition, Utkin’s
equivalent control, etc.) such that an absolutely
continuous solution of the differential inclusion

ẋ ∈ f(x)

is called a solution for system (2). We assume
that the set-valued function f is bounded, upper
semicontinuous with closed convex values.

Later on (Lemma 1) we impose conditions that
guarantee uniqueness of the solutions (2) in pos-
itive time. The parameterized mapping x0 7→
x(t, x0), t ≥ 0, or the semi-flow will be denoted
as ϕt : Ω → Ω.

Consider a scalar differentiable function V : Ω×
Ω → R, V (x, x) = 0.

Define the time derivative of the function V along
two solutions x(t, x1), x(t, x2) of (2) as follows



V̇ (x1, x2) :=
∂V (x1, x2)

∂x1
ẋ1 +

∂V (x1, x2)
∂x2

ẋ2.

Since V is Lipschitz continuous and the solutions
x(t, xi) are absolutely continuous functions of
time, the derivative

V̇ (x(t, x1), x(t, x2))

exists almost everywhere in [0, mini T̄i), where T̄i

is the maximal interval of existence of the solution
xi(t, xi0) in Ω.

For the function V we can also define its upper
derivative as follows

V̇ ∗(x1, x2) = sup
ξi∈f(xi)

(
∂V (x1, x2)

∂x1
ξ1 +

∂V (x1, x2)
∂x2

ξ2

)
.

Then for almost all t ≥ 0 it follows that

V̇ (x(t, x1), x(t, x2)) ≤ V̇ ∗(x(t, x1), x(t, x2)).

By the same token, the lower derivative of the
function V is defined as

V̇∗(x1, x2) = inf
ξi∈f(xi)

(
∂V (x1, x2)

∂x1
ξ1 +

∂V (x1, x2)
∂x2

ξ2

)
.

and satisfies

V̇ (x(t, x1), x(t, x2)) ≥ V̇∗(x1(t, x1), x2(t, x2)).

almost everywhere.

We formulate the following hypothesis:

H1. There exists a n × n symmetric positive
definite matrix P , such that the function

V (x1, x2) = (x1 − x2)>P (x1 − x2) (3)

satisfies the following inequality

V̇ ∗(x1, x2) ≤ (x1−x2)>Q(x1)(x1−x2)+o(||x1−x2||2)
for all x1, x2 ∈ Ω with a symmetric differentiable
matrix valued function Q, bounded on Ω and with
the function of higher order terms o obeying

o(||x1 − x2||2)
||x1 − x2||2 → 0, as ||x1 − x2|| → 0

uniformly over x1, x2 from any compact subset of
Ω.

H1a. The lower derivative of the function W (x1, x2) =
(x1 − x2)>Q(x1)(x1 − x2) satisfies the following
condition: for any compact subset of Ω there is a
number M that

Ẇ∗(x1, x2) ≥ MV (x1, x2).

Note that assumption H1a is always satisfied if f

is locally Lipschitz continuous.

H2. All solutions starting in Ω are defined for all
t ≥ 0.

We begin with the following preliminary result:

Lemma 1. Suppose the assumptions H1 and H2
are satisfied. Then any solution x(t, x0) to (2),
with x0 ∈ Ω is right-unique (for the definition of
right-uniqueness see (Filippov, 1988), Chapter 2,
page 106)) and depends continuously on the initial
conditions.

The previous lemma shows that the Cauchy prob-
lem (2) is well-posed and continuous dependence
on initial conditions follows.

Let λ1(x) ≥ λ2(x) ≥ . . . ≥ λn(x), x ∈ Ω be
the ordered solutions of the following generalized
eigenvalue problem

det(Q(x)− λP ) = 0

which are real since both Q and P are symmetric.

Consider a compact set S of finite Hausdorff d-
measure for some d = d0 + s, d ≤ n, where
d0 ∈ N and s ∈ [0, 1). Suppose that S ⊂ Ω, then
ϕt(S) ⊂ Ω for all positive t. Now we formulate the
following result.

Theorem 2. Suppose hypotheses H1, H1a and H2
are satisfied. If for some d = d0 + s, 0 < d0 ≤ n,
0 ≤ s < 1 it follows that

sup
x∈Ω

(λ1(x) + . . . + λd0(x) + sλd0+1(x)) < 0. (4)

Then
lim

t→∞
µd(ϕt(S)) = 0.

The proof is based on the construction of a fi-
nite set of affine maps Rn → Rn which locally
approximate ϕt. Then, using the linear part of
those maps we approximate how the d-measured
volume is changed under those maps to compute
the change of µd(ϕt(S)). The main result of this
section is the following theorem.

Theorem 3. Suppose hypotheses H1, H1a and H2
are satisfied, and there exist positive integer d0



and real s ∈ [0, 1) such that

sup
x∈Ω

(λ1(x) + . . . + λd0(x) + sλd0+1(x)) < 0. (5)

Suppose that there is an invariant compact set
K ∈ Ω.

Then dimHK ≤ d0 + s.

3. A HIGHER-DIMENSIONAL
GENERALIZATION OF BENDIXSON’S

CRITERION

We begin with some definitions.

Definition 3. (Federer, 1969) A set S ⊂ Rn is
called a d-dimensional rectifiable set, d ∈ N if
µd(S) < ∞ and µd-almost all of S is contained
in the union of the images of countably many
Lipschitz functions from Rd to Rn.

The rectifiable sets are generalized surfaces of
geometric measure theory. Any 1-dimensional
closed rectifiable contour γ bounds some two-
dimensional rectifiable set, for example the cone
over γ.

A set is said to be simply connected if any simple
closed curve can be contracted to a point contin-
uously in the set.

Theorem 4. Suppose that assumptions H1, H1a
and H2 are satisfied, let Ω be a simply connected
set. Suppose that

sup
x∈Ω

(λ1(x) + λ2(x)) < 0. (6)

Then Ω does not contain whole periodic orbits.

The proof of Theorem 4 follows an idea used in
the proof of the Leonov theorem ((Leonov, 1991),
see also Theorem 8.3.1 in (Leonov et. al., 1996)).

It is worth noting that this theorem being applied
to smooth systems together with its time reversed
version (for smooth systems we have local right
and left uniqueness) gives the classical Bendixson
divergency condition.

The main idea of the proof (see (Leonov, 1991)) is
based on the existence of a surface with minimal

area given its boundary. Although the mathemat-
ical problem of proving existence of a surface that
has minimal area and which is bounded by a
prescribed curve, has a long defied mathematical
analysis, an experimental solution is easily ob-
tained by a simple physical device. Plateau, a Bel-
gian physicist, studied the problem by dipping an
arbitrarily shaped wire frame into a soap solution.
The resulting soap film corresponds to a relative
minimum of area and thus produces a minimal
surface spanned by that wire contour. A classical
solution to Plateau’s problem can be found, for
example, in (Courant, 1950) with some regularity
assumptions on the contour γ that can be violated
if γ is a closed orbit corresponding to a periodic
solution of a system of differential equations with
discontinuous right hand sides. Fortunately, the
argument based on geometric measure theory al-
lows to overcome this difficulty.

3.1 Example

Consider the following system:

ẋ = Ax + Bu, u = −sign(y), y = Cx (7)

where x ∈ R3, u, y ∈ R1 and the matrices A,B, C

are given as follows

A =




α 1 1
−1 β −1
−1 1 −1


 , B =




0
0
b


 , C = (0 0 1)

with positive b. Consider the smooth function (3)
in the form

V = (x1 − x2)>(x1 − x2)

For this system the corresponding solution ac-
cording to the Filippov convex definition coincides
with the Utkin solution (Filippov, 1988). At the
discontinuity points of the right-hand side, the
corresponding set valued function in the differ-
ential inclusion is obtained by the closure of the
graph of the right hand side and by passing over
to the convex hull. As shown in (Filippov, 1988),
p.155, these procedures do not increase the upper
value of V̇ ∗ and hence it is sufficient to compute
the derivative of V only in the area of continuity



of the right hand side. The derivative of V in this
area satisfies

V̇ ≤ 2(x1 − x2)>




α 0 0
0 β 0
0 0 −1


 (x1 − x2)

The condition H1a is satisfied since b > 0. The
previous theorem suggests that if min{α, β} ≥
−1, a sufficient condition for the absence of pe-
riodic solutions is

α + β < 0 (8)

To demonstrate that violation of the condition (8)
can result in oscillatory behavior we perform a
computer simulation for the following parameter
values: α = 1, β = −1/2, b = 1. The results of the
simulation are presented in Figure 1. It is seen
that the system possesses an orbitally stable limit
cycle.
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Fig. 1. Oscillatory behavior of (7) for α + β > 0.

3.2 An LMI based criterion for Lur’e systems with
discontinuous right hand side

In the previous example the matrix A was chosen
as a sum of a diagonal and a skew-symmetric ma-
trix that made all necessary calculations trivial.
Next we present an LMI based criterion which
ensures the absence of periodic solutions for the
following system:

ẋ = Ax + Bu, u = −bsign(y), y = Cx (9)

where x ∈ Rn, n ≥ 2, u, y ∈ R1, b > 0 and the
matrices A,B, C are of corresponding dimensions.

Theorem 5. Suppose there exists µ and positive
definite matrix P such that the following inequal-
ity




P (A− µIn) + (A− µIn)>P ∗ ∗
B>P − C 0 0

B>(PA + A>P ) + γC 0 0


 ≥ 0 (10)

is satisfied for some γ ≥ 0. Then if

trA− (n− 2)µ < 0

the system (9) does not have periodic solutions.

Proof: According to (10) the matrix P satisfies
the following equation PB = C>. Thus taking
the derivative of the following function

V = (x1 − x2)>P (x1 − x2)

yields (as in the previous example it is sufficient
to compute the derivative in the area of continuity
of the right hand side)

V̇ = (x1 − x2)>(PA + A>P )(x1 − x2)

−2b(Cx1 − Cx2)(signCx1 − signCx2)

≤ (x1 − x2)>(PA + A>P )(x1 − x2) (11)

Let us verify the condition H1a with the function

W = (x1 − x2)>(PA + A>P )(x1 − x2).

With similar calculations as above the function W

satisfies the condition H1a since (PA+A>P )B =
−γC>.

Now consider the smallest solution λn of the
following equation

det(PA + A>P − λP ) = 0 (12)

From the hypothesis it follows that λn ≥ 2µ. On
the other hand if λi, i = 1, . . . , n are the solutions
of (12) then

λ1 + . . . + λn = 2trA

Since λi ≥ λn it follows that

λ1 + λ2 ≤ 2(trA− (n− 2)µ) < 0

and according to Theorem 4 the system (9) has
no periodic solutions. ¤



4. CONCLUSIONS

In this paper we presented a new discontinuous
version of a Bendixson like criterion. The crite-
rion is based on a new result on the estimation
of the Hausdorff dimension of invariant sets for
(possibly) discontinuous systems. The new crite-
rion can be applied for the design and control
of discontinuous systems when the requirement
of global stability is too restrictive. Our study
is based on dichotomy-like properties of solutions
of dynamical systems with respect to each other
rather than with respect to some invariant sets.
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