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Abstract— We propose the simple shell model to describe
the focusing of cool atomic beam interacting with open-loop
modulated optical field.
This model can be apply to form efficient splitting effect in
momentum space.

I. I NTRODUCTION

In nano-lithography the optical control of atomic motion
is one of the main problems. In principle, we can make such
a control for atom dynamics because there is an exchange
of momentum between the atoms and the optical fields.
The momentum exchange can be created with practical
devices: atomic mirrors and atomic beam splitters which are
main elements of atomic interferometer. The most interest-
ing possibility here is to obtain the splitting of the initial
atomic wave packet coherently into two main momentum
components only by controllable way. It is needed both for
increasing of atomic interferometer sensitivity and for the
creation of periodic nano structures by atomic wave packet
lithography [1].

The principal opportunity to split the beam in the mo-
mentum space was demonstrated in [2], [3]. To achieve the
effective splitting, we apply the scheme of open-loop control,
or feed-forward control, i.e. a control signal depends onlyon
the time. Our control goal is to obtain the large angle splitting
for the initial wave packet after some time of the interaction
between the atoms and the field of modulated standing wave.

II. PHYSICAL BACKGROUND AND MATHEMATICAL

MODEL FORBEAM SPLITTING IN MOMENTUM SPACE

Atom lithography is an active field now a days. The
resolution of an optical lithography technology is limited
by diffraction, which for the case of deep ultraviolet light
approaches 200 nm. The progress of recent device technol-
ogy requires smaller patterning of 10 nm size. However,
when one tries to make very small devices, the resolution
of the resistance is limited by the spread of the secondary
electron in an electron beam lithography, as well as in X-ray
lithography.

The ability to generate ultracold atoms using lasers has
opened up new possibilities. The long de Broglie wave of
cold atoms makes possible an interferometric manipulation
with atomic wave packets, which is designed by an optical
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standing wave. In this case, atoms can be controlled directly
to form a desired pattern. To produce the pattern with
high resolution, we need to split the wave packet into two
coherent momentum components only. For the model with
only two states (i.e. an approximation of two level atom
states), we have to split the population of the lower state
(because the population of the exited state usually loses
the coherency very fast by spontaneous decay) in several
momentum components (in an ideal case – only two). At
the same time to form the pattern with small step we need
to control the scale of splitting between two main coherent
components in momentum space. Therefore, an atomic beam
splitter is the main element for the practical realization of
nano-scale lithography with the controlled step by coherent
scattering of an atomic wave packet.

Let’s consider now a two level atom in a far detuned
standing wave with the intensity modulated in time asI =
I0f(ε, ∆ · t, φ0)cos(kx), whereε is an amplitude,∆ is the
frequency of the modulation, andφ0 is an initial modulation
phase.

The standing wave with the frequencyω1 applies between
two states of atom system, where the state 1 is ground and
the state 2 is the exited one. Here,ω0 is the frequency of
atom transition and the differenceω1 − ω0 is the detuning.

We will assume that the beam from an atom source prop-
agates alongz-axis and crosses the optical wave, standing
alongx-axis, by right angle. The spontaneous emission from



the upper level in this system can not be neglected. After
some timet of the interactions between the atoms and the
field of the standing wave, the initial atomic wave packet is
spllited in few coherent momentum components.

Dynamics of the atom in the modulated standing wave is
described with non-stationary Schroedinger equation for the
wave functionΨ(r, t) of the two level atom:

ih̄
∂Ψ(r, t)

∂t
= ĤΨ(r, t), (1)

where Ĥ is a Hamiltonian which takes into account both
the atom movement along the standing wave and the dipole
interaction between the atom and the optical field. For
sufficiently large detuning, when it is much larger than Rabi
frequency and the natural width of the atomic transition,
Ω >> R0, Γ (where R0 is the Rabi frequency,Γ is the
natural width of the atomic transition), the excited state 2
can be adiabatically eliminated. As a result, we obtain the
equation for the amplitude of the probability of the ground
stateΨ1(x, t):

ih̄
∂Ψ1(x, t)

∂t
= − h̄2

2m
△xxΨ1(x, t) +

+
R2

0

Ω
[f(ε, ∆ · t, φ0)]

2cos2(kx)Ψ1(x, t) , (2)

wherem is the atom mass.
After the Fourier transform the same equation in the

momentum space is given by:

i
∂Ψ1(p, τ)

∂τ
= (p2 + R2)Ψ1(p, τ) +

+
R2

2
[Ψ1(p + 2, τ) + Ψ1(p − 2, τ)] , (3)

where

R2 =
R2

0

2ΩωR

[f(ε, (∆/ωR) · τ, φ0)]
2

ωR = h̄k2/2m is called a recoil frequency,τ = ωRt.
Here we normalised atom momentum alongx-axis to h̄k
and the other quantities (the interaction time, the Rabi
frequency and the detuning) we normalised to the recoil
frequencyωR. We have to point out that equations (2)-(3) are
valid in the approximation when both the changing of atom
momentum alongz-axis and the initial value alongx-axis
can be neglected.

III. SHELL MODEL FOR THESPLITTING PROCESS:
PARAMETRIC CONTROL

To explain the effect of splitting in the momentum space
we start from the case of parametric control with a constant
R. We invent a complex shell model forΨ1-function. Ini-
tially the atomic beam has a Gaussian distribution centered
at p = 0. Thus, from the structure of the RHS (3) we
can expect the non-zero meanings ofΨ1 functions to be
concentrated in the neighbourhoods of the pointsp = 2n,
wheren = 0,±1,±2, .... Then we can predict the continuous
dependency onp with the discrete numbern:

Ψ1(p + 2n, τ) = yn(τ).

Dynamics Eq. (3) can be re-written in the form:

i
dyn(τ)

dτ
= (4n2 + R2)yn(τ) +

+
R2

2
[yn−1(τ) + yn+1(τ)] (4)

with the initial conditions:y0(0) = 1 ; yn6=0(0) = 0.
Now we want to limit our shell number. In the case of

five shells, we will omit the coefficients4 and16 in RHS of
Eq.(4), because the numerical meaning ofR2 is about300
(i.e. R2 >> 4 and16 ), and we have the following system
of equations.

ι
dy◦(τ)

dτ
= R2

(

y◦(τ) + y1(τ)
)

(5)

ι
dy1(τ)

dτ
= R2

(

y1(τ) +
y◦(τ)

2
+

y2(τ)

2

)

ι
dy2(τ)

dτ
= R2

(

y2(τ) +
y1(τ)

2

)

with initial conditions: y◦(0) = 1, y1(0) = y2(0) = 0.
We demand for the elder shells:y±3 = y±4 = ....... ≡ 0, for
any momentτ .
The solution of system (5) for constantR is given in [3].
The splitting effect for the model of5 shells in the case of
constantR is shown in the following figure.
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However, if the numbern of a shell is increased such that
4n2 >> R2 (i.e. for R ≃

√
300 we haven >> 10), then

R2 in (4) can be excluded as a small parameter, and for the
elder shells

i
dyn(τ)

dτ
≃ 4n2yn(τ) (n >> 10) . (6)



This function is almost independent of the neighbour shells
and it has the solution

yn(τ) ≃ e−4in
2
τyn(0) . (7)

But yn(0) = 0 for any n 6= 0, thus, the elder shells do
not participate in the re-distribution of the initial Gaussian
population. Thus, the simple parametric control with the
fixed R is not enough to split the beam efficiently. Another
scheme of time-dependentR (corresponding to the most
general open-loop control) should be applied.

IV. SHELL MODEL FOR THESPLITTING PROCESS:
TIME DEPENDENTR

Now we solve the system (5), and the solution is:

y◦(τ) = e−ιθ

[1

3
+

2

3
cos

(

√
3

2
θ
)]

y1(τ) =
−ι√

3
e−ιθ

[

sin
(

√
3

2
θ
)]

y2(τ) = e−ιθ

[−1

3
+

1

3
cos

(

√
3

2
θ
)]

where

θ =

∫

R2(τ)dτ (8)

The corresponding population amplitudes of the shells0 ,
±1 and±2 are given by:

a◦(τ) = y◦(τ)y∗
◦(τ) =

1

9
+

4

9

[

cos
(

√
3

2
θ
)]2

+

+
4

9

[

cos
(

√
3

2
θ
)]

(9)

a1(τ) = y1(τ)y∗
1(τ) =

1

3

[

sin
(

√
3

2
θ
)]2

a2(τ) = y2(τ)y∗
2(τ) =

1

9
+

1

9

[

cos
(

√
3

2
θ
)]2

−

−2

9

[

cos
(

√
3

2
θ
)]

Surely, the normalization

a◦ + a−1 + a+1 + a−2 + a+2 = a◦ + 2a1 + 2a2 = 1

is satisfied for any momentt.

V. D IFFERENT VALUES OF R(τ )

Now we will investigate different cases for different values
of R(τ ).
We present the typical behavior of the model for the case
R(τ)2 = R2

◦(1 + ǫcos(∆τ)) in the figure,
whereR◦ ≈

√
300, ǫ ≈ 0.7, ∆ ≈ 30.
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The behavior of the model for the case
R(τ)2 = R2

◦(1 + ǫsin(∆τ))
is shown in the following figure,
whereR◦ ≈

√
300, ǫ ≈ 0.7, ∆ ≈ 30.
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The behavior of the model for the case
R(τ)2 = R2

◦(1 + ǫcos2(∆τ))
is shown in the following figure,
whereR◦ ≈

√
300, ǫ ≈ 0.7, ∆ ≈ 30.
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The behavior of the model for the case
R(τ)2 = R2

◦(1 + ǫsign(cos(∆τ)));
is shown in the following figure,
whereR◦ ≈

√
300, ǫ ≈ 0.7, ∆ ≈ 30.
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The following figure demonstrates the influence of the shape
and the initial phase of the splitting effect for the following
cases, when
Case-1: Parametric control (whenR = R◦ is constant);
Case-2:R(τ)2 = R2

◦(1 + ǫcos(∆τ));
Case-3:R(τ)2 = R2

◦(1 + ǫsin(∆τ));

Case-4:R(τ)2 = R2
◦(1 + ǫcos2(∆τ));

Case-5:R(τ)2 = R2
◦(1 + ǫsign(cos(∆τ)));

whereR◦ ≈
√

300, ǫ ≈ 0.7, ∆ ≈ 30.

Thus the splitting effect is shown in the following
figure, which contains the elder shells of all the cases.
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VI. N UMERICAL SIMULATION RESULTS FOR OPEN-LOOP

CONTROL WITH HARMONICAL MODULATION

Now let us consider the two level atom in a far detuned
standing wave with an intensity, which is modulated in time
harmonically as

I = I0(1 + εcos(∆t))2cos2(kx),

where ε is the amplitude and∆ is the frequency of the
modulation.

We assume also that an initial wave functionΨ1(p, τ = 0)
has Gaussian profile with the widthδp:

Ψ1(p, τ = 0) =
1√
2π

exp

[

− p2

(δp)2

]

. (10)

We remind that now we use the dimensionless timeτ = ωRt.
The following figures show the numerical solution of

an equation for amplitude of the probability of ground
state|Ψ1(p, τ)|2 in momentum representation for the cases
unmodulated and modulated standing wave. We assume that
initial wave packet has the width equalsδp = 0.5h̄k and
ε = 0.8, ∆/ωR = 29. As we can see from these pictures,
the scattering result strongly depends on the amplitude
modulation existing in this system. If for an unmodulated
case, it is well-known scattering picture observed (Fig. a),
when an initial wave packet is splitted into a number of
momentum components.



However, for modulated standing wave the scattering picture
is changing dramatically and two main momentum compo-
nents centered on±40h̄k can be observed (Fig. b).

Such behaviour of the momentum components is due to
specific parametric resonance, which occurs in this system
by the well defined amplitude and frequency modulation.

VII. C ONCLUSIONS

In this paper we concentrated on the possibility to split an
atomic wave packet in standing wave with modulated ampli-
tude because this beam-splitter has a number of advantages
by comparing with others.

The first one is the simplicity for an experimental realiza-
tion because it is quite easy to obtain the time modulation
of intensity with any shape.

The second advantage is that the scale splitting of an
atomic wave packet can be controlled by changing the values
of both an amplitude and the frequency of the modulation.

ACKNOWLEDGMENT

The authors wish to thank Prof. Boris Matisov (St. Pe-
tersburg Polytechnic University) for productive scientific
discussions.

The numerical simulation part of this research was fi-
nancially supported by the Russian Foundation of Basic
Research, Grant 04-02-16175A

REFERENCES

[1] P. R. Berman, ”Atom Interferometry,” Academic Press, New York,
1997.

[2] S. V. Borisenok, Yu. V. Rozhdestvensky, ”Coherent atomic beam-
splitter control for nano-scale atom wave packet lithography,” in
Proc. Int. Conf. Physics and Control PHYSCON’2003, St. Petersburg,
Russia, 2003, pp. 906-908.

[3] B. Ahmad, S. V. Borisenok, Saifullah and Yu. V. Rozhdestvensky,
”Open-Loop Control of Quantum Particle Motion: EffectiveSplitting
in Momentum Space,”Journal of Prime Research in Mathematics,
vol. 2, pp. 208–216, 2006.


