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Abstract: The problem under consideration is planning of spatial trajectories for a flying
vehicle. The methods are based on the six-dimensional model with the longitudinal overload,
transversal overload and the roll angle as controls. The class of trajectories with the monotone
variation of the mechanical energy of a flying vehicle is considered.
The method of constructing the multi-link trajectories by interfacing more than one interval
with monotone energy variation is described. Attention is focused on the multi-link trajectories
with monotone energy variations. Examples of the two-level algorithm to construct complex
spatial trajectories are presented.
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1. INTRODUCTION

Complexity of the flight vehicle situation and the high
cost of control decisions bring forth the task of planning
the flight trajectory. The information about the feasible
flight trajectories is of special importance both for making
decisions about complex spatial maneuvers and in non-
standard situations. In this and other cases, the acceptable
variants of the flight trajectories must be analyzed in real
time, which presents special requirements on the methods
for seeking feasible flight trajectories.

Determination even of one trajectory is a mathematical
challenge because the trajectory must connect the initial
and final states, pass through some intermediate states,
and be realizable by a particular flight vehicle. Hence
the problem lies in developing special methods to solve
a rather general problem of the trajectory motion control.

A bulky scientific literature deals with the problem of
control of various flight vehicles [Taranenko V.T., Batenko
A.P., Thomson D.G. and Bradley R.]. It deserves noting
that the mathematical models of flight vehicle motion are
well known. To solve a particular motion control problem,
a simplified mathematical model is taken, and the control
algorithm is constructed on its basis. It goes without
saying that the decisions made in this way must be tested
by mathematical modeling of more precise motion models.
This approach was justified by solving control problems
such as motion on the vertical plane, rectilinear motion on
the horizontal plane, and vertical takeoff and landing.

For simple geometry of the flight trajectory, such problems
can be solved using the linear motion models and linear
? The investigations are partially supported under grants of RFBR
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methods of the control theory. However, at modeling of
and seeking for the controls realizing complex spatial ma-
neuvers of the flying vehicle, the linear models and linear
control methods turn out to be insufficient. More sophis-
ticated mathematical models allowing for the nonlinear
nature of motion must be used.

This paper presents a solution to the problem of real-
time construction of the trajectory with the given initial
and final states. The solution is chosen in the class of
trajectories with monotone variation of the mechanical
energy of the flight vehicle. The trajectory determined is
checked to verify that the overloads, the roll angle, and the
state variables do not exceed the predefined critical values.

2. MOTION EQUATIONS

Consider the problem of flying vehicle motion control
under the following assumptions: 1) mass is constant; 2)
no wind; 3) terrestrial curvature is disregarded.

To describe the motion of the center of mass of a flying
vehicle we take the trajectory reference frame.

By allowing for the representation of the forces acting on
the flying vehicle through the overloads and adding three
differential equations relating the velocity vector with the
spatial coordinates, we obtain the following system of six
differential equations describing the flying vehicle motion
under the aforementioned assumptions:

V̇ = (nx − sin θ)g, Ḣ = V sin θ,

θ̇ =
(ny cos γ − cos θ)g

V
, L̇ = V cos θ cosψ,

ψ̇ = −nyg sin γ
V cos θ

, Ż = −V cos θ sinψ,

(1)



where V is the velocity, m/sec; θ is the flight path angle,
rad; ψ is the heading angle, rad; H is the altitude m;
L is the along-track deviation, m; Z is the cross-track
position, m; nx is the longitudinal overload; ny is the
transversal overload; γ is the roll angle, rad; g is the
sea-level acceleration of gravity, m/sec2.

The along-track position L, altitude H, and cross-track
position Z are the coordinates xg, yg, zg of the position of
the flying vehicle center of mass in the normal earth-fixed
reference frame.

The overloads nx, ny and the roll angle γ are considered
as the controls.

It is required to select a trajectory and corresponding
controls such that by moving along it the flying vehicle
passes from the initial state

x0 = (V0, θ0, ψ0, H0, L0, Z0)
T
, (2)

to the given final state

x∗ = (V∗, θ∗, ψ∗, H∗, L∗, Z∗)
T
, (3)

which must be realized with the given precision:
|∆xi| = |xi − xi∗| < ∆i, i = 1, 6.

At that, the state variables must lie within the given ranges
of variation:

V ∈ [Vmin, Vmax], |θ| <
π

2
, θ ∈ [θmin, θmax],

ψ ∈ [ψmin, ψmax], H ∈ [Hmin, Hmax],
L ∈ [Lmin, Lmax], Z ∈ [Zmin, Zmax].

(4)

Similar constraints are also imposed on the controls:
|γ|<γmax, nx,min≤nx≤nx,max, ny,min≤ny≤ny,max. (5)

We also assume that in the initial and final states the
values of controls

γ0, nx0, ny0, γ∗, nx∗, ny∗ (6)
and their tolerable deviations ∆γ , ∆x, and ∆y in the final
state are known.

3. INTRODUCTION OF THE VIRTUAL CONTROLS

We introduce the following variables as the virtual controls
for system (1):

v1 = nx, v2 = ny cos γ, v3 = ny sin γ. (7)
With these controls, (1) becomes an affine system of n = 6
equations with m = 3 controls:

V̇ = −g sin θ + gv1, Ḣ = V sin θ,

θ̇ = −cos θ
V

g +
g

V
v2, L̇ = V cos θ cosψ,

ψ̇ = − g

V cos θ
v3, Ż = −V cos θ sinψ.

(8)

System (8) has the canonical form [Krishchenko A.P.,
1985]

ÿ = A+Bv (9)
where

y =

(
y1
y2
y3

)
, v =

(
v1
v2
v3

)
, A =

(−g
0
0

)
,

B =

( sin θ cos θ 0
cos θ cosψ − sin θ cosψ sinψ
− cos θ sinψ sin θ sinψ cosψ

)
.

The canonical state variables are

y1 = H, y2 = L, y3 = Z, (10)

ẏ1 =V sinθ, ẏ2 =V cosθ cosψ, ẏ3 =−V cosθ sinψ. (11)

In the domain which in source state variable is described
by (4) system (9) is solvable with respect to the controls

v = B−1(ÿ −A). (12)

4. PROGRAM TRAJECTORY AS TIME FUNCTION

Since the time interval is not defined, we take it equal to
[t0, t∗] and determine the spatial trajectory H = y1(t),
L = y2(t), Z = y3(t), t ∈ [t0, t∗], satisfying all boundary
conditions, that is, the given boundary conditions for state
and control. To this end, we use relations (7) to calculate
the boundary values of the virtual controls v(t0) = v0,
v(t∗) = v∗.

According to (9), (10), and (11), the boundary conditions
for state and the virtual controls at the ends of the time
interval [t0, t∗] define the boundary conditions for the
vector function y(t) and their first and second derivatives.
Thus for t = t0 we establish that

y(t0) = y0, ẏ(t0) = ẏ0, ÿ(t0) = ÿ0, (13)

and for t = t∗, similarly

y(t∗) = y∗, ẏ(t∗) = ẏ∗, ÿ(t∗) = ÿ∗, (14)

Each of the components yi(t), i = 1, 2, 3, of the smooth
vector function y(t), satisfying the boundary conditions
(13), (14) may be taken independently. For example, all of
them may be found among the polynomials of the variable
t of degree five. Indeed, let for the smooth function f(t)
the boundary conditions

f(t)|t=t0 = f0, ḟ(t)|t=t0 = ḟ0, f̈(t)|t=t0 = f̈0, (15)

f(t)|t=t∗ = f∗, ḟ(t)|t=t∗ = ḟ∗, f̈(t)|t=t∗ = f̈∗. (16)
be defined over the interval [t0, t∗]. We consider the poly-
nomial of the fifth degree

p(t) =
2∑

j=0

f
(j)
0

j!
(t− t0)j +

3∑
j=1

cj(t− t0)2+j . (17)

For any values of the constants cj , the polynomial p(t)
satisfies the boundary conditions (15) for t = t0. For t = t∗,
conditions (16) can always be satisfied by an appropriate
choice of the constants cj . It is sufficient to substitute the
polynomial in (16) and solve the resulting system of linear
algebraic equations with respect to the unknowns cj :

∆3c1 + ∆4c2 + ∆5c3 = f∗ − f0 − ḟ0∆− f̈0
2

∆2,

3∆2c1 + 4∆3c2 + 5∆4c3 = ḟ∗ − ḟ0 − f̈0∆,

6∆c1 + 12∆2c2 + 20∆3c3 = f̈∗ − f̈0,

(18)

where ∆ = t∗ − t0 6= 0. Solution of this square system
always exists and is unique because the determinant of
the system matrix is equal to 2∆9 6= 0.



5. CONSTRUCTION OF THE PROGRAM
TRAJECTORY AS THE FUNCTION OF ENERGY

To realize the above procedure for construction of the
program control it is necessary to know the length t∗ − t0
of the time interval. However, this instant is not given
in advance. The problem can be circumvent in part by
passing to a new variable

E = H +
V 2

2g
(19)

which is the total energy of the system reduced to the
dimensionless form (E also will be referred to as energy).
It is assumed that E is a monotone function of time. Since

Ė = V nx = V v1, (20)
the energy varies monotonically over the trajectory if
the velocity V does not go to zero and the overload nx

retains its sign. In what follows, we denote by stroke the
derivatives of various variables with respect to the variable
E (for example, V ′ = dV

dE
). By passing in system (8) to

the new independent variable E, we obtain the following
system of differential equations describing the motion of
the flight vehicle along a trajectory section with monotone
variation of energy:

V ′ =
(v1 − sin θ)g

V v1
, H ′ =

sin θ
v1

,

θ′ =
(v2 − cos θ)g

V 2v1
, L′ =

cos θ cosψ
v1

,

ψ′ = − v3g

V 2v1 cos θ
, Z ′ = −cos θ sinψ

v1
.

(21)

The initial (2) and final (3) states of system (1) define
the initial E0 and final E∗ values of the variation of E.
Therefore, states (2)–(3) may be regarded as the initial
(for E = E0) and final (for E = E∗) states of system (21).

According to (20), for a trajectory with monotone vari-
ation of energy connecting the initial (2) and final (3)
system states to exist, it is necessary that for E0 > E∗ the
control v1 = nx be negative over the interval [E∗, E0] and
positive for E0 < E∗, that is, the values of control v1(E)
must be coordinated with the relation between E0 and E∗.
To take this situation into consideration, we introduce the
constant δ assuming that

δ = sign(E∗ − E0) =
{
−1, E0 > E∗,
1, E0 < E∗,

(22)

and TE is the interval of variations of the variable E
bounded by the points E0 and E∗. Then, the desired
condition to conform to the control v1(E) with E0 and
E∗ lies in satisfying the inequality

v1(E) = δ|v1(E)|, E ∈ TE . (23)
To stress this fact, we call v1(E) the conforming control.

When defining the boundary condition for the control
nx = v1, one must bear in mind that the trajectory
with monotone variation of energy connecting the initial
(2) and final (3) states of the system exists only if the
corresponding conforming condition is satisfied. For E =
E0, it has the form nx0 = δ|nx0|, and nx∗ = δ|nx∗| for
E = E∗. If the boundary conditions for control nx = v1
are not conforming with variations of energy, then in the
class of continuous controls there exists no solution of the

terminal problem to which a trajectory with monotone
variation of energy corresponds.

We assume that the boundary conditions nx0 and nx∗
defined in the states (2) and (3) are conforming with
variation of energy. We refer to such boundary conditions
for control nx as the conforming conditions.

Using (21) we may determine the boundary values H ′
0, L

′
0,

Z ′
0 and H ′

∗, L
′
∗, Z

′
∗ of the functions H ′, L′, Z ′ for E = E0

and E = E∗.

We denote by S2(TE) the set of twice continuously differ-
entiable on TE functions

r : TE → R3, r(E) = (h(E), l(E), z(E))
T

which together with their first derivatives at the ends of
the interval TE satisfy the following boundary conditions:

r(E0) = (H0, L0, Z0)
T
, r(E∗) = (H∗, L∗, Z∗)

T
,

r′(E0) = (H ′
0, L

′
0, Z

′
0)

T
, r′(E∗) = (H ′

∗, L
′
∗, Z

′
∗)

T
.

Indices such as l′′∗ = l′′(E∗) will be used to denote the
values of the functions h(E), l(E), and z(E) and their
derivatives with respect to E at the ends E0 and E∗ of
the interval of energy variations. The same index at the
state or control variable will denote their given value at
the corresponding boundary point. For the rest of the
variables, these indices will be used to denote their desired
or calculated values at the boundary points.
Theorem 1. Let the boundary conditions for control be
defined only for nx and be conforming, and the function

r(E) = (h(E), l(E), z(E))T ∈ S2(TE) satisfy the condi-
tions

l′
2(E) + z′

2(E) 6= 0, E ∈ TE ; (24)

h(E) < E, E ∈ TE . (25)

Then, there exist virtual controls (7) continuous on TE

such that system (8) passes from the initial state (2) to the
final state (3) along the spatial trajectory r(TE), monotone
variation of energy corresponding to this transition.

We substitute the functions H = h(E), L = l(E), and
Z = z(E) in system (21) and obtain the equations

V ′ =
(v1 − sin θ)g

V v1
, h′ =

sin θ
v1

,

θ′ =
(v2 − cos θ)g

V 2v1
, l′ =

cos θ cosψ
v1

,

ψ′ = − v3g

V 2v1 cos θ
, z′ = −cos θ sinψ

v1

(26)

in the functions V = V (E), θ = θ(E), ψ = ψ(E),
v1 = v1(E), v2 = v2(E) and v3 = v3(E) where the
argument E of all functions is omitted for simplicity.

Due to (26) and conforming condition we have

v1 = v1(E) =
δ√

h′2 + l′2 + z′2
, (27)

and this function according to (24) is continuous on TE .

It follows from the expression for h′ in system (26) that

sin θ = h′v1. (28)



Therefore, with regard for the constraint |θ| < π/2,

cos θ =

√
l′2 + z′2√

h′2 + l′2 + z′2
= δv1

√
l′2 + z′2. (29)

It follows from the expressions for l′ and z′ in system (26)
and equality (29) that

cosψ =
δl′√

l′2 + z′2
, sinψ = − δz′√

l′2 + z′2
. (30)

Let us determine the velocity V = V (E) > 0 by the
formula

V = V (E) =
√

2g(E − h), (31)
which is correct with respect to (25). With this choice the
first equation of system (26) will fulfilled.

By differentiating equalities (28) and (30) with respect to
E we get

θ′ = θ′(E) = −δv2
1

h′(l′l′′ + z′z′′)− h′′(l′2 + z′2)√
l′2 + z′2

. (32)

and

ψ′ = ψ′(E) = −z
′′l′ − l′′z′

l′2 + z′2
. (33)

It now becomes possible to determine the controls v2 and
v3 from the expressions for θ′ and ψ′ in system (26):

v2=v2(E)=−2(E−h)δv3
1

h′(l′l′′+z′z′′)−h′′(l′2+z′2)√
l′2+z′2

+

+ δv1
√
l′2 + z′2, (34)

v3 = v3(E) = 2(E − h)δv2
1

z′′l′ − l′′z′√
l′2 + z′2

. (35)

According to the above formulas and condition (24), the
functions v2 = v2(E) and v3 = v3(E) are continuous
on TE .

All controls were determined as the functions of energy:
vi = vi(E), i = 1, 2, 3. The same refers to the state
variables. Although for the angles θ and ψ only their sines
and cosines were determined, these values—with regard
for the initial state and choice of the function r(E)—
enable unique calculation of the functions θ(E) and ψ(E)
at variations of E from E0 to E∗. Since this solution of
system (26) was determined by squaring, it is required to
verify that it is namely the solution of system (26) that was
established and that it satisfies the boundary conditions
for state and control v1.

It is possible to verify directly that the functions H =
h(E), L = l(E), and Z = z(E) together with V = V (E)
(31), θ = θ(E) (28) – (29), ψ = ψ(E) (30) and the controls
v1(E) (27), v2(E) (34) and v3(E) (35) convert the system
equations (21) into identities.

Let us check the boundary conditions. Since r(E) =

(h(E), l(E), z(E))T ∈ S2(TE), the values of the functions
H = h(E), L = l(E), and Z = z(E) at the ends of the
interval of energy variations coincide with the values of the
spatial coordinates at the boundary points.

For the function V (E), we establish that

V (E0) =
√

2g(E0 − h0) =
√

2g(E0 −H0) = V0

and similarly V (E∗) = V∗.

With regard for (21), we obtain for the control v1(E) that

v1(E0) =
δ√

H ′2
0 + L′20 + Z ′2

0

= δ|v10| = v10

owing to the fact that the boundary values are conforming
for it; similarly, v1(E∗) = v1∗.

We determine in the same way that

sin θ(E0) = H ′
0v10 = sin θ0,

cos θ(E0) = δv10

√
L′0

2 + Z ′
0
2 =

δv10 cos θ0
|v10|

= cos θ0.

Similarly, sin θ(E∗) = sin θ∗, and cos θ(E∗) = cos θ∗.

The corresponding equalities for the angle ψ are verified
in the same manner.

The dependences of the state variables on the energy
define in the state space the curve passing through the
initial state (2) for E = E0 and the final state (3) for
E = E∗. This curve is the trajectory of system (21)
because the determined dependences of the state variables
and control on energy convert all equations of system (21)
into identities. Consequently, the controls vi = vi(E),
i = 1, 2, 3, are the program solutions of the terminal
problem (2)–(3) for system (21).

We fix the initial time instant t0 and determine the
dependence of energy vs. time. According to (20)

dt

dE
=

1
V (E)v1(E)

= δ

√
(h′(E))2 +(l′(E))2 +(z′(E))2dE√

2g(E−h(E))
and therefore

t= t0 + δ

∫ E

E0

√
(h′(E))2 +(l′(E))2 +(z′(E))2dE√

2g(E−h(E))
. (36)

The value of E = E(t) is determined uniquely from (36)
as equation in E.

The terminal time instant t∗ corresponding to the function
r(E) is equal to

t∗ = t0 +δ
∫ E∗

E0

√
(h′(E))2 +(l′(E))2 +(z′(E))2dE√

2g(E−h(E))
. (37)

The dependence of energy vs. time enables one to consider
the controls vi = vi(E), i = 1, 2, 3, as the time functions:
vi = vi(E(t)), t ∈ [t0, t∗], i = 1, 2, 3. For system (8),
these functions will be the program solution of the terminal
problem (2)–(3) where t∗ was determined from (37).

In what follows, we assume that the boundary conditions
for control nx = v1 are defined and conforming with the
boundary states.

Relations (32) and (33) can be represented as
h′(z′z′′ + l′l′′)− h′′(l′2 + z′2) = b1(E),
l′z′′ − z′l′′ = b2(E), (38)

where

b1(E) = −δ θ
′√l′2 + z′2

v2
1

, b2(E) = −(l′2 + z′2)ψ′.

Let us determine the boundary values of controls (34):

v2(E0) =
V 2

0

g
θ′(E0)v10 + cos θ0,



where

θ′(E0) = −δv2
10

h′0(l
′
0l
′′
0 + z′0z

′′
0 )− h′′0(l′20 + z′20 )√
l′20 + z′20

=

= −δv2
10

H ′
0(L

′
0l
′′
0 + Z ′

0z
′′
0 )− h′′0(L′20 + Z ′2

0 )√
L′20 + Z ′2

0

.

Similarly,

v2(E∗) =
V 2
∗
g
θ′(E∗)v1∗ + cos θ∗,

where

θ′(E∗) = −δv2
1∗
h′∗(l

′
∗l
′′
∗ + z′∗z

′′
∗ )− h′′∗(l

′2
∗ + z′2∗ )√

l′2∗ + z′2∗
=

= −δv2
1∗
H ′
∗(L

′
∗l
′′
∗ + Z ′

∗z
′′
∗ )− h′′∗(L

′2
∗ + Z ′2

∗ )√
L′2∗ + Z ′2

∗
.

Additionally,

v3(E0) = −V
2
0

g
ψ′(E0)v10 cos θ0,

where

ψ′(E0) = −z
′′
0L

′
0 − l′′0Z

′
0

L′20 + Z ′2
0

and

v3(E∗) = −V
2
∗
g
ψ′(E∗)v10 cos θ∗,

where

ψ′(E∗) = −z
′′
∗L

′
∗ − l′′∗Z

′
∗

L′2∗ + Z ′2
∗

.

These boundary values of the controls v2(E) and v3(E)
depend on the values at the boundary points of the second
derivative of the function r(E) satisfying the condition of
Theorem 1. One can readily see that the function r(E) can
be always selected with the value r′′(E) at the boundary
point such that at this point the boundary condition for
v2(E) and/or v3(E) will be satisfied.

6. POLYNOMIAL DEFINITION OF THE
TRAJECTORY

As follows from Theorem 1, any smooth curve r(E) with
the values of function, its derivative and, possibly, second
derivative defined at the ends of the interval can be used
as the trajectory of a flying vehicle. It is only natural to
use polynomials for this purpose.

Let us consider the construction of the polynomial y(t)
over the interval [t1, t2] for which defined are at the initial
point t1 of the interval the values of all their derivatives
from the zero to the (r−1)st order and at the terminal
point t2, from the zero to the (s−1)st order. Within the
framework of the paper, the numbers s and r may assume
values 2 or 3.

We have r + s conditions for coefficients of a polynomial
y(t). Therefore we may select the polynomial order r+s−1.
If we denote

y(t) = d0+d1(t−t1)+d2(t−t1)2+· · ·+dr+s−1(t−t1)r+s−1,

we have from boundary conditions
d0 = y0,

...
Ar−1

r−1dr−1 = y
(r−1)
0 ,

d0 + d1∆ + · · ·+ dr+s−1∆r+s−1 = y∗,
...

As−1
s−1ds−1 + · · ·+As−1

r+s−1dr+s−1∆r = ys−1
∗ ,

(39)

where Am
n = n(n− 1) . . . (n−m+ 1).

System (39) is linear and has a unique solution. With this
solution we determine a unique polynomial y(t) satisfying
given boundary conditions.

Construction of the spatial trajectory. Let us con-
sider determination of the spatial trajectory

H = h(E), L = l(E), Z = z(E)
from the boundary conditions for state under different
requirements on the values of control at the ends of the
interval TE of energy variation.

Theorem 1 and analysis of its proof provide the following
results in case when the boundary conditions for states and
the conforming boundary conditions for control nx = v1
are defined.

1. The functions h(E), l(E), and z(E) can be defined as
polynomials.

2. If the boundary conditions for the controls v2 and v3
are not defined, then the functions h(E), l(E), and z(E)
can be taken as the third-degree polynomials of E with
the given values of the polynomial and its derivative at
the ends of the interval [E0, E∗]. If the condition (24) is
violated, then ε(E − E0)2(E − E∗)2 with some ε 6= 0 may
be added to l(E) or z(E).

3. If the values v2(t0) = v20 and v3(t0) = v30 of the
controls v2 and v3 are defined at the initial point t0, then
for the functions h(E), l(E) and z(E) their values and
their derivatives are known at both ends of the interval.
Moreover the three values of the second derivatives at the
initial point will be related by two linear equations (38).
Any three values of h′′0 , l′′0 , and z′′0 satisfying this system
of equations can be taken.

4. If the values of the controls v2 and v3 are defined both at
the initial and final points, then by two conditions will be
imposed on the second derivatives of the functions h(E),
l(E), and z(E) at the initial and final points. Thus it
allows one to take functions from the third-fifth-degree
polynomials.

7. STABILIZATION OF THE PROGRAM CONTROL

A certain program motion of the canonical system (9)
will be denoted by (ỹ(t), ṽ(t)), t ≥ t0. This may be, for
example, any of the two above program motions of this
system (in time and energy). We determine a continuously
differentiable control v = v(y, t) in the form of (nonsta-
tionary) state feedback of system (9) [Krishchenko A.P.,
1994] such that its values at the points of the program
trajectory coincide with the values of the corresponding
program control

v(ỹ(t), t) = ṽ(t)



and system (9) closed by the control v = v(y, t) in the
variables of the perturbed motion

zi = yi − ỹi(t), żi = ẏi − ˙̃yi(t), i = 1, 2, 3, (40)

is of the form

z̈i + ki1żi + ki0zi = 0, i = 1, 2, 3, (41)

where the constants kij are positive.

We notice that the matrix G(y) = 1

g
B(y) is orthogonal

and, therefore, G−1 = G
T.

The identity
¨̃y(t) = A+ g G(ỹ(t)) ṽ(t) (42)

is valid for the program motion. By subtracting (42) from
(9), we establish that

ÿ − ¨̃y(t) = g G(y) v − g G(ỹ(t))ṽ(t),

Consequently,

v = G
T
(y)G(ỹ(t))ṽ(t) +

1
g
G

T
(y)
(
ÿ − ¨̃y(t)

)
.

With allowance for (40) and (41), we finally obtain

v = v(y, t) = G
T
(y)G(ỹ(t))ṽ(t)−

− 1
g
G

T
(y)
(
K1(ẏ − ˙̃y(t)) +K0(y − ỹ(t))

)
, (43)

where K1 = diag(k11, k21, k31), K0 = diag(k10, k20, k30)
are diagonal matrices. For this control, the program trajec-
tory ỹ(t) of the canonical system is asymptotically stable.

8. RECALCULATION OF CONTROLS

The vector function v = v(y, t) defined by (43) is a set
of auxiliary relations providing solution of the terminal
control problem. The initial controls (longitudinal and
transversal overloads and the roll angle) can be established
from the virtual control using relations 7):

nx = v1, ny =
√
v2
1 + v2

2 , γ = arctan
v3
v2
. (44)

If the control constraints (5) reflecting the constructive
characteristics of the helicopter are disregarded, then, ac-
cording to Theorem 1, under any boundary conditions for
the state variables and controls that meet the conforming
conditions, the problem of terminal control is solvable
in the class of continuous controls. This is true for any
variant of the boundary conditions, that is, independently
of whether the boundary conditions for the transversal
overload and the roll angle are given or not. At that, the
flight trajectory as a function of E will be twice continu-
ously differentiable. However, condition (25) may lead to
an unsuccessful attempt to establish the solution in the
class of trajectories obeying the small-degree polynomials
of E.

We note that under the determined controls v = v(y, t) the
program trajectory of system (1) corresponding to ỹ(t) will
be asymptotically stable in the canonical variables.

The established controls need not satisfy constraints (5).
It is planned that in real fact the controls will be specified
as follows:

ñx = sat(nx;nx,min, nx,max),
ñy = sat(ny;ny,min, ny,max),
γ̃ = sat(γ;−γmin, γmax),

(45)

where sat(x; a, b) = min{max{x, a}, b} is the saturation
function.

Since all calculations rely on the virtual controls v1, v2, and
v3 (see Sec. 3), to take into consideration the constraints
on the original controls, the current values of the virtual
controls are recalculated into the main controls which
are then corrected and recalculated back into the virtual
controls.

Adjustment of the controls by the saturation function
brings about an additional error in the result of motion
modeling. This error can be so high that the motion trajec-
tory does not reach the final point. Yet in some cases this
distortion of the program controls can be eliminated using
the stabilization mechanism so as the resulting trajectory
is acceptable. Potential distortions in controls give rise to
the need for additional testing of the determined trajec-
tory. This testing is done by means of direct modeling of
motion and analysis of its results.
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