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Abstract
A simple zero-order proportional feedback technique

for stabilizing unknown saddle type unstable fixed
points is described. The technique employes either nat-
ural or artificially created stable fixed points to find un-
known coordinates of the unstable fixed point. Two
physical examples have been investigated, namely me-
chanical pendulum and autonomous Duffing-Holmes
oscillator have been considered both analytically and
numerically.
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1 Introduction
Stability of any either natural or artificial system is a

valuable and desired property. Stabilization in partic-
ular of unstable fixed points (UFPs) of dynamical sys-
tems is an important problem in basic science and engi-
neering applications if periodic or chaotic oscillations
are unacceptable behaviours. Usual control methods,
based on proportional feedback [Kuo, 1995; Nijmeijer
and Schaft, 1996; Ogata, 1997] require knowledge of
a mathematical model of a system or at least the exact
location of the UFP in the phase space for the refer-
ence point. However, in many real complex systems,
especially in biology, physiology, economics, sociol-
ogy, chemistry, nuclear engineering neither the reliable
models nor the exact coordinates of the UFPs area pri-
ori known. Moreover, the position of the UFP may
slowly vary with time because of external unknown and
unpredictable, e.g. chaotic forces. Therefore model-
independent and reference-free methods, automatically
tracing unknown UFP are needed.
A number of adaptive, reference-free methods using

either low-pass, high-pass or notch stable filters have
been described in literature (many of the references
can be found in a recent paper [Tamaševičiuset al.,

2010]). However, they can stabilize unstable nodes and
unstable spirals only, but fail to stabilize the saddle-
type UFPs, more specifically the UFPs with an odd
number of real positive eigenvalues. To solve the prob-
lem of the odd number limitation Pyragaset al. [Pyra-
gaset al., 2002] proposed to use an unstable filter. It
was a bold idea to fight instability with another insta-
bility. The technique has been demonstrated to stabi-
lize saddles in several mathematical models [Pyragas
et al., 2002; Pyragaset al., 2004; Tamaševičiuset al.,
2008; Tamaševičiuset al., 2010] also in the experi-
ments with an electrochemical oscillator [Pyragaset
al., 2002; Pyragaset al., 2004], the Duffing-Holmes-
type electrical circuit [Tamaševičiuset al., 2008]. This
advanced method is limited to dissipative dynamical
systems only. It is not applicable to conservative sys-
tems. The limitation of the unstable filter method can
be proved analytically using the Hurwitz stability cri-
teria: the necessary condition for stabilizing a saddle
UFP is that the cut-off frequency of the unstable fil-
ter is lower than the damping coefficient of the system
[Pyragaset al., 2002]. In conservative systems damp-
ing is zero under definition. Formally, the cut-off fre-
quency could be set negative. However, this would
mean that the unstable filter should become a stable
one and, therefore, inappropriate to stabilize a saddle-
type UFP. To get around the problem a conjoint filter,
that involves unstable and stable subfilters, has been
very recently suggested and demonstrated for the La-
grange point L2 of the Sun–Earth astrodynamical sys-
tem [Tamaševičiuset al., 2010].
The control methods described in [Pyragaset al.,

2002; Pyragaset al., 2004; Tamaševičiuset al., 2008;
Tamaševičiuset al., 2010] are focused on designing
complex unstable higher order controllers with several
adjustable control parameters. Even linear analysis of
the stability properties employs high order Hurwitz ma-
trixes for determining the threshold values of the feed-
back coefficients, while finding optimal control param-
eters requires numerical solution of high order charac-



teristic equations. Therefore the developed techniques
are somewhat complicated for practical applications.
In this paper, we suggest simple zero-order stable pro-

portional feedback technique, which employs either
natural or artificially created stable fixed points (SFPs)
to find unknown coordinates of the UFP.

2 Simple mathematical models
To illustrate the idea we start with an extremely simple

mathematical example

ẋ = x − ξ. (1)

Hereξ is a priori unknown parameter. The correspond-
ing UFP,x0 = ξ is also unknown and therefore the
proportional feedback cannot be applied directly. How-
ever, we demonstrate that this unknown UFP can be
still stabilized by two-step proportional feedback. In
the first step we apply proportional feedback with an
arbitrarily chosen reference pointr1:

ẋ = x − ξ + k(r1 − x), (2)

wherer1 is any real, either positive or negative (zero
value is also applicable) constant. Fork > 1 the feed-
back creates an artificial SFP:

x1 = (kr1 − ξ)/(k − 1).

Note, that the control termk(r1 −x) in Eq. (2), in gen-
eral, does not vanish, becauser1 is not the natural UFP
of the original Eq. (1). An exception is a ”resonant”
valuer1 = x0. It means that we are lucky to guess the
right reference pointx0 and the procedure is accom-
plished in one step. Otherwise the unknown parameter
ξ should be found from the steady-state case of Eq. (2):

ξ = x1 + k(r1 − x1).

In the second step we simply replacer1 in Eq. (2) with
x0 = ξ found in the first step:

ẋ = x − ξ + k(x0 − x) (3)

and readily stabilize the initially unknown UPFx0 = ξ.
If a dynamical system has two fixed points, specifi-

cally one UFP and one SFP, the latter can be employed
to find the position of the first one. In this case stabi-
lization can be achieved in one step only, without creat-
ing an artificial SFP. The following nonlinear equation
is an example:

ẋ = x − x2 − ξ. (4)

For ξ < 0.25 it has two real fixed points:

x01 = 0.5 + (0.25 − ξ)1/2,

x02 = 0.5 − (0.25 − ξ)1/2.

Thex01 is a SFP, whilex02 is a UFP. Note an important
feature:

x01 + x02 = 1. (5)

Thus, the natural SFP,x01 can be immediately used to
find the UFP,x02 = 1 − x01 to be inserted in the feed-
back term:

ẋ = x − x2 − ξ + k(1 − x01 − x). (6)

Now we can generalize the above specific examples in
the following form:

ẋ = F (x) − ξ, (7)

whereF (x) is either linear or nonlinear function. De-
pending onF (x) Eq. (7) can have several fixed points,
which satisfy the steady-state equationF (x0) = ξ.
The fixed points are either UFP or SFP depending on
the derivative ofF (x) with respect tox, theF ′(x) at
x = x0. If F ′(x0) > 0 thex0 is UFP, and ifF ′(x) < 0
the x0 is SFP. We recall here that all the fixed points
are unknown because of the unknown parameterξ. Let
us consider a UFP and apply two-step procedure. The
first step similarly to Eq. (2) is given by

ẋ = F (x) − ξ + k(r1 − x). (8)

The unknown parameterξ is found from the steady-
state equation:

ξ = F (x1) + k(r1 − x1)

and then is inserted into the steady-state equation of the
uncontrolled system:

F (x0) − F (x1) − k(r1 − x1) = 0.

If the F (x) is well defined the latter equation can be
solved with respect tox0 and, finally, the second step
is applied:

ẋ = F (x) − ξ + k(x0 − x). (9)



3 Mechanical pendulum
The first example is a mechanical pendulum given by

ϕ̈ + βϕ̇ + sin ϕ = ξ. (10)

In Eq. (10)ϕ is the angle between the downward ver-
tical and the rod,β is the damping coefficient, and
ξ is a constant, but generally unknown torque. For
small torqueξ < 1, the system has two fixed points
(ϕ01,02, ϕ̇01,02) = (ϕ01,02, 0), where

ϕ01 = arcsin ξ,

ϕ02 = π − arcsin ξ.

Theϕ01 is SFP (lower position of the pendulum), the
ϕ02 is a saddle UFP (upper position of the pendu-
lum).One can see that the sum of the two angles is a
constant value:

ϕ01 + ϕ02 = π. (11)

Thus we can apply a simplified one-step procedure,
similarly to the first-order mathematical example given
by Eq. (4). Here we exploit the existing natural SFP
of the pendulum to determine the position of the UFP,
without creating any artificial point. The coordinate
of the unknown UFP is readily obtained from the co-
ordinate of the known (observed) stable point,ϕ02 =
π − ϕ01, independently of the unknown parameterξ.
Then we apply the proportional feedback:

ϕ̈ + βϕ̇ + sin ϕ = ξ + k(π − ϕ01 − ϕ). (12)

Linearization of Eq. (12) aroundϕ02 gives the charac-
teristic equation:

λ2 + βλ + k + cos(π − ϕ01) = 0. (13)

For smallξ the angleϕ01 ≪ π, thusλ1,2 = −β/2 ±
[β2/4 − (k − 1)]1/2. The threshold value of the feed-
back coefficient iskth = 1 for which the largest eigen-
value λ1 crosses zero from positive to negative val-
ues. The optimal value of the feedback coefficient
kopt = 1 + β2/4; the eigenvalues are both negative
and equal to each other,λ1 = λ2 = −β/2. Further
increase ofk makes the eigenvalues complex, but does
not change their real parts. So, for higher feedback co-
efficients the convergence rate saturates withk and is
fully determined by the damping coefficientβ. Results
of numerical integration of Eq. (12), shown in Fig. 1,
demonstrate dynamics of stabilization (including tran-
sient process) of saddle-type UFP.

Figure 1. One-step stabilization of the upper position of mechanical

pendulum by proportional feedback given in Eq. (12); the dynamics

of the angleϕ. The control is switched on att = 100. The pa-

rameters areβ = 0.2, k = 2. The stable angle observed before

switching the controlϕ01 = 0.5, extracted unknown parameter

ξ = sin ϕ01 = 0.47943, stabilized UFP and angle calculated

from the relationshipϕ02 = π − ϕ01 = 2.64.

4 Duffing–Holmes system
The second physical example is the Duffing-Holmes

nonlinear damped oscillator, which in contrast to clas-
sical Duffing system [Ott, 1993] lacks external periodic
driving force, but includesapriori unknown constant
biasξ:

ẍ + bẋ − x + x3 = ξ. (14)

Hereb is the damping coefficient. For|ξ| < 2/
√

27
Eq. (14) has three fixed points. Two side points are
SFPs, while the middle one is a saddle-type UFP. Their
coordinates for non-zeroξ are rather cumbersome:

x01 = −h cos
π − θ

3
,

x02 = −h cos
π + θ

3
,

x03 = h cos
θ

3
, (15)

h =
2√
3
,

θ = arccos
ξ
√

27

2

While for ξ = 0 they become:x01 = −1, x02 =
0, x03 = 1. There is a simple relationship between the
three coordinates:

x01 + x02 + x03 = 0, (16)

which is valid also for non-zeroξ. Therefore one can
think about the one-step algorithm (x02 = −x01−x03),
similarly to the case of the pendulum. However from a



Figure 2. One-step stabilization of the UFP of the Duffing-Holmes

oscillator by proportional feedback given in Eq. (18); the dynam-

ics of the variablex(t). The control is switched on att = 100.

The parameters areb = 0.5, k = 1.1. SFP observed before

switching the controlx01 = −0.8, extracted unknown parame-

ter ξ = x3

01
− x01 = 0.288, stabilized UFP and coordinate

calculated from formula (15)x02 = −0.321.

practical point of view the procedure is not convenient,
since one needs to find (to observe) two remote SFPs,
separated by UFP. So, if a system is located at one of
the SFP, sayx01, we have to switch it to another SFP
(x03) by applying some rather strong external force.
Alternatively, we can use only one SFP, eitherx01 or
x03. From the corresponding formula (15) we can ex-
tractξ and to use it for findingx02, again from the for-
mulas (15). However this formal way requires rather
long and complicated calculations. There is a shorter
way. Indeed, the SFPx01 satisfies the steady-state
equation:

x3

01
− x01 − ξ = 0. (17)

From here the unknown parameterξ is readily derived
as ξ = x3

01
− x01 and is used to calculatex02 from

the appropriate formula (15). Then this coordinate is
employed in the proportional feedback:

ẍ + bẋ − x + x3 = ξ + k(x02 − x). (18)

Linearization of Eq. (18) aroundx02 provides the
characteristic equation:

λ2 + bλ + k − 1 + 3x2

02
= 0. (19)

Its two eigenvalues are given byλ1,2 = −b/2±[b2/4−
(k − 1 + 3x2

02
)]1/2. For smallξ the coordinate of the

UFP |x02| ≪ 1. Then stabilization parameters are the
same as that for the pendulum: the threshold coefficient
kth = 1, the optimal valuekopt = 1+b2/4, and the best
pair of the real negative eigenvaluesλ1,2 = −b/2. Nu-
merical results for the Duffing-Holmes oscillator ob-
tained by integrating Eq. (18) are presented in Fig. 2.

5 Conclusion
We have suggested simple proportional feedback tech-

nique for stabilizing uncertain saddle type fixed points
of dynamical systems. The method involves either one
or two step algorithm of stabilization. It makes use
of either natural or of artificially created stable fixed
points in order to find the hidden coordinates of the
unstable fixed point. Two simple mathematical exam-
ples have been presented and two physical examples
have been investigated. Specifically, mechanical pen-
dulum and the autonomous Duffing-Holmes oscillator
with unknown external forces are considered analyti-
cally and numerically. Though the examples represent
the second order damped systems, we believe that sim-
ilar technique can be applied to higher order active sys-
tems, including autonomous chaotic oscillators as well.
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