
PHYSCON 2009, Catania, Italy, September, 1–September, 4 2009

FEEDBACK CONTROL OF THE SQUEEZING OF THE
FLUORESCENCE LIGHT

Alberto Barchielli
Dipartimento di Matematica
Politecnico di Milano, Italy

and INFN (Istituto Nazionale di Fisica Nucleare)
Alberto.Barchielli@polimi.it

Matteo Gregoratti
Dipartimento di Matematica
Politecnico di Milano, Italy

and INFN (Istituto Nazionale di Fisica Nucleare)
Matteo.Gregoratti@polimi.it

Abstract
Among the formulations of the theory of quantum

measurements in continuous time, quantum trajectory
theory is very suitable for the introduction of measure-
ment based feedback and closed loop control of quan-
tum systems. In this paper we present such a construc-
tion in the concrete case of a two-level atom stimulated
by a coherent, monochromatic laser. In particular, we
show how fast feedback à la Wiseman and Milburn can
be introduced in the formulation of the theory. Then,
the spectrum of the free fluorescence light is studied
and typical quantum phenomena, squeezing and sub-
natural line-narrowing, are presented.
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1 Introduction
The theory of continuous measurements and filtering

for quantum systems [Belavkin, 1988; Barchielli and
Belavkin, 1991] has opened the possibility of a con-
sistent introduction of measurement based feedback
in continuous time and, so, of closed loop control
of quantum systems. The formulation of continuous
measurement theory adopted in the paper is the one
based on stochastic differential equations, commonly
known in quantum optics as quantum trajectory theory
[Carmichael, 2008].
Photo-detection theory in continuous time has

been widely developed inside quantum trajectories
[Barchielli and Paganoni, 1996; Zoller and Gardiner,
1997] and applied, in particular, to the fluorescence
light emitted by a single trapped two-level atom stim-
ulated by a coherent monochromatic laser. As well as
various feedback schemes on the atom evolution, based
on the outcoming photocurrent, have been proposed
[Wiseman and Milburn, 1993]. However the introduc-

tion and the analysis of feedback have been mainly fo-
cused on the control of the atom. The typical aim was
to drive the atom to a preassigned asymptotic state.

Here, we are interested not only in the atom, but also,
and mainly, in the emitted light. Of course, a detection
of the emitted light can be seen as a direct observation
of the emitted light as well as an indirect observation of
the emitting atom mediated by the fluorescence light.
Our aim is to employ control and feedback processes
to enhance the squeezing properties of the fluorescence
light. The squeezing of the fluorescence light can be
checked by homodyne detection and spectral analysis
of the output current. We consider the mathematical
description of photo-detection based on quantum tra-
jectories, as it is suitable both to consistently compute
the homodyne spectrum of fluorescence light, and to
introduce feedback and control in the mathematical for-
mulation. We study how the squeezing depends on the
various control parameters, how feedback mechanisms
can be successfully introduced and used to enhance the
squeezing [Barchielli, Gregoratti and Licciardo, 2009;
Barchielli and Gregoratti, 2009]. We consider only
the Markovian feedback scheme à la Wiseman-Milburn
[Wiseman and Milburn, 1993], which is simple, but
flexible enough to give a physically interesting model
of closed loop control. We also show that, under cer-
tain conditions, feedback can produce an effect of line
narrowing in the homodyne spectrum, similarly to what
happens to an atom stimulated by squeezed light.

Apart from the new results on enhancing squeezing by
feedback and on line narrowing, there is a conceptual
interest in using quantum trajectory theory in deriv-
ing the homodyne spectrum. The traditional approach
to homodyne or heterodyne spectrum is to define, by
some analogy with the classical case, a suitable quan-
tum correlation function for the outgoing electromag-
netic field. Then, the spectrum is defined to be the
Fourier transform of such a correlation function. Fi-
nally, the quantum fields are eliminated in favour of
the atomic variables and the “quantum regression the-



orem” is used to get the final result. On the other side,
quantum trajectory theory is based on quantum mea-
surement theory and gives the output of the measure-
ment in continuous time together with its distribution,
consistently with principles of quantum mechanics. As
the output is a stochastic process, its spectrum can be
rigorously defined by probability theory by using its
distribution. Moreover, thanks to the consistency of
quantum continuous measurement theory, even when
the quantum fields have been already eliminated (so
that quantum regression theorem is implicitly already
contained), the output can be seen not only as an obser-
vation of the system, but also as the result of an obser-
vation of the output field which mediates the measure-
ment. To succeed in describing a quantum effect such
as squeezing of the fluorescence light by using quantum
trajectory theory is to show that such a theory, in spite
of its “classical flavour”, is fully quantum mechanical.

We consider a trapped two-level atom with Hilbert
spaceC2. Denoting by~σ the vector(σx, σy, σz) of the
Pauli matrices, let the free Hamiltonian of the atom be
ω0σz/2, with resonance frequencyω0 > 0, and let the
lowering and rising operators beσ− andσ+. Let the
eigenprojectors ofσz be denoted byP+ andP− and,
for every angleφ, let us introduce the unitary selfad-
joint operator

σφ = eiφ σ− + e−iφ σ+ = cosφσx + sinφσy .

2 The dynamics

We start by giving the theory in the case of no feed-
back and then we show how to introduce it, according
to the scheme of [Wiseman and Milburn, 1993].

2.1 No feedback

We admit an open Markovian evolution for the atom,
subjected to ‘dephasing’ effects and to interactions
both with a thermal bath and with the electromagnetic
field, via absorption and emission of photons. The
atom is stimulated by a coherent monochromatic laser.
We denote byγ > 0 the natural linewidth of the atom,
by Ω ≥ 0 the Rabi frequency, byω > 0 the frequency
of the stimulating laser and by∆ω = ω0−ω the detun-
ing. Other parameters are the intensities of the dephas-
ing and thermal effects,kd ≥ 0 andn ≥ 0. The state
ηt is governed by a Master equation, which turns out to
be time-homogeneous in the rotating frame (which we
adopt here and in the rest of the paper):

d

dt
ηt = Lηt ,

where

Lρ = −i

[

∆ω

2
σz +

Ω

2
σx , ρ

]

+ γkd (σz ρ σz − ρ)

+ γn

(

σ+ ρ σ− − 1

2
{P− , ρ}

)

+ γ(n+ 1)

(

σ− ρ σ+ − 1

2
{P+ , ρ}

)

.

Note that the intensity of the laser enters only in the
effective Hamiltonian through the Rabi frequencyΩ.
The measuring apparatus is made by two homodyne

detectors. Part of the emitted light reaches the detec-
tors and part is lost in the free space. The fraction of
light detected by one of the detectors depends on its
efficiency, on the spanned solid angle and can even-
tually be enhanced by using a focussing mirror. So,
the fluorescence light is divided in three parts accord-
ing to the direction of propagation: we callside chan-
nel k (k = 1, 2) the directions reaching the detectork,
andforward channel those of the lost light. The stim-
ulating laser is well collimated in such a way that it
does not hit the detectors; so, we can say that it acts
in the forward channel. We denote the effective frac-
tions of light emitted in the forward and in the two
side channels by|α0|2, |α1|2, |α2|2, respectively; obvi-
ously,|α0|2 + |α1|2 + |α2|2 = 1. Fork = 1, 2, we can
also interpret|αk|2 as the total efficiency of the detector
k. Moreover, the initial phase of the local oscillator in
each detector is denoted byϑk and it is included in the
parameterαk ∈ C by settingϑk = argαk. To change
ϑk means to change the measuring apparatus.
We can condition the evolution of the atom on the con-

tinuous monitoring of the photocurrents. The two ho-
modyne photocurrentsI1 and I2 and the conditional
state of the atomρt (a posteriori state) are stochas-
tic processes whose distributions depend on the initial
state of the atom and on the parameters introduced so
far. In particular the atom has still a Markovian evolu-
tion, even if stochastic. Let us introduce the latter by
means of thelinear stochastic Master equation

dσt = Lσt dt+
√
γ

2
∑

j=1

R[αjσ−]σt dWj(t), (1)

where, for every matrixa, the superoperatorR[a] is

R[a]ρ = a ρ+ ρ a∗,

and whereW1 and W2 are two independent stan-
dard Wiener processes in some reference probability
space(Ω,F ,Q). In all these equations the initial con-
dition is a statistical operator̺0 = η0 = σ0 and the
solutionσt of (1) is a positive operator valued stochas-
tic process.



Then, the homodyne photocurrents are the (gener-
alised) stochastic processesIj(t) = Ẇj(t), while the
a posteriori state is

ρt :=
σt

pt
, with pt = Tr{σt}.

The important point is that the physical distribution of
the homodyne currents and the a posteriori states in
the time interval[0, T ] is given by the new probability
PT (dω) = pT (ω)Q(dω): the quantitypT = Tr{σT }
is the density of thephysical probability with respect
to the reference probability. By the fact thatpt, t ≥ 0,
turns out to be aQ-martingale, we have that the physi-
cal probabilities do not depend on the final timeT .
Of course, we could switch on the detectors, but de-

cide to ignore the outputs. This should not modify the
evolution of the atom and, indeed, for everyt ≤ T ,

ηt =

∫

Ω

σt(ω)Q(dω) =

∫

Ω

ρt(ω)PT (dω).

Thanks to the linearity of (1), we can introduce the
stochastic evolution map (or propagator)A(t, s), satis-
fying

A(t+ dt, t)− Id = Ldt+√
γ

2
∑

j=1

R[αjσ−]dWj(t),

so thatσt = A(t, 0)σ0. Here,Id is the identity map on
the space of2× 2 complex matrices.

2.2 Introduction of the feedback
We introduce a feedback scheme based onI1, in or-

der to modify the properties of the fluorescence light in
channel 2. We check such properties by analysing the
properties ofI2, but, of course, we could remove the
second homodyne detector and employ the light emit-
ted in channel 2 for other purposes. Let us call itfree
light. Our scheme is summarised by the following pic-
ture, where “h. det.” means “homodyne detector”:

h. det.

I2(t)
OO

�� ��

�� ��atom

forward channel
OO
O�
O�
O�

side

channel 1
///o/o/o/o/o/o/o/o/oside

channel 2
oo o/ o/ o/ o/ o/ o/ o/ o/ o/ h. det.

I1(t)
qqelectromodulator

OO
O�
O�
O�

laser

O�
O�
O�

Assuming instantaneous feedback, the amplitude of the
stimulating laser is modified by adding a term propor-
tional toI1, with the same frequencyω and with initial

phase possibly different from that of the original laser.
Let this phase difference beϕ ∈ [0, π). As the laser
intensity appears only in the Hamiltonian part of the
evolution (1), the effect of the feedback is to give rise
to a new Hamiltonian termI1(t)M with

M = c
√
γ σϕ,

wherec ∈ R controls the intensity of the feedback. Let
us deduce the modified evolution equation. By defining
the map

Mρ = −i[M,ρ],

the contribution of the feedback to the propagator in an
infinitesimal interval turns out to be

eM dW1(t) = Id +M dW1(t) +
1

2
M2dt.

Taking into account that the feedback must act after the
signal is produced, the new infinitesimal propagator is

Af(t+ dt, t) = eM dW1(t) ◦ A(t+ dt, t).

By the Ito rules we obtain

Af(t+ dt, t)− Id = Lfdt

+
√
γR[α1 σ− − ic σϕ] dW1(t)

+
√
γR[α2 σ−] dW2(t),

where

Lfρ = −i

[

∆ωc

2
σz +

Ω

2
σx , ρ

]

+ γkd (σz ρ σz − ρ)

+ γn

(

σ+ ρ σ− − 1

2
{P− , ρ}

)

+ γ(n+ 1− |α1|2)
(

σ− ρ σ+ − 1

2
{P+ , ρ}

)

+ γ(α1 σ− − ic σϕ) ρ (α1 σ+ + ic σϕ)

− γ

2

{(

|α1|2 − 2c|α1| sin(ϑ1 − ϕ)
)

P+ + c2 , ρ
}

,

∆ωc = ∆ω + c γ |α1| cos(ϑ1 − ϕ) ∈ R.

Thus, thanks to the features of the particular feedback
introduced, we get another linear stochastic Master
equation

dσt = Lfσt dt+
√
γR[α1 σ− − ic σϕ]σt dW1(t)

+
√
γR[α2 σ−]σt dW2(t). (2)



By Girsanov theorem, a fundamental result of stochas-
tic calculus, it is possible to prove that under the phys-
ical probability the output homodyne currents can be
written as

Ij(t)dt = dWj(t) = dBj(t) + vj(t)dt,

whereB1(t), B2(t) (t ∈ [0, T ]) are two independent
standard Wiener processes underPT and

v1(t) = 2
√
γReTr {(α1σ− − icσϕ) ρt} ,

v2(t) = 2
√
γRe (α2 Tr {σ−ρt}) .

Then the mean function ofI2 is

EPT
[I2(t)] = v2(t).

Moreover, by using techniques based on characteris-
tic functionals, explicit expressions for the higher mo-
ments of the output have been obtained [Barchielli and
Gregoratti, 2009]. In particular, the auto-correlation of
I2 is

EPT
[I2(t) I2(s)] = δ(t− s) + γ Tr

{

R[α2σ−]

◦ e|t−s|Lf ◦ R[α2σ−] ◦ emin{s,t}Lf ̺0

}

. (3)

The expression above is similar to what is obtained in
traditional approaches through the quantum regression
theorem; the general theory of continuous measure-
ments guarantees that it is a positive definite function
of s andt as it must be for an auto-correlation function.

3 The spectrum of the free light in channel 2
Let us consider now the spectrum of the light in chan-

nel 2, the fluorescence light detected but not involved
in the feedback loop. The homodyne currentI2(t) is a
stochastic process and it can be proved that it is asymp-
totically stationary. Then, the spectrumS2(µ) is the
Fourier transform of the autocorrelation function for
long times. This classical definition can be recast in
the following way:

S2(µ) = Sel(µ) + Sinel(µ),

Sel(µ) = lim
T→+∞

1

T

∣

∣

∣

∣

∣

EPT

[

∫ T

0

eiµs I2(s) ds

]∣

∣

∣

∣

∣

2

,

Sinel(µ) = lim
T→+∞

1

T

{

EPT





∣

∣

∣

∣

∣
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0

eiµs I2(s) ds

∣

∣

∣

∣

∣

2




−
∣

∣

∣

∣

∣

EPT

[

∫ T

0

eiµs I2(s) ds

]∣

∣

∣

∣

∣

2
}

≥ 0, (4)

where the spectrum is decomposed in theelastic and
inelastic parts. By explicit computations on can see
thatSel(µ) is proportional to a Dirac delta centred in
zero (as we are working in the rotating frame,µ = 0
corresponds to resonance with the frequency of the
stimulating laser). Instead,Sinel(µ) is the limit of the
normalised variance of the Fourier transform of the
photocurrentI2. An explicit expression can be ob-
tained from the expression of the second moments (3).
The asymptotic behaviour of the atomic a priori state
ηt = eLf t̺0 ensures that the limit defining the spec-
trum exists and that it is independent of the initial state
̺0 of the atom. We get

Sinel(µ) = 1 + 2γ|α2|2 ~s ·
(

A

A2 + µ2
~t

)

, (5)

where~s =
(

cosϑ2, sinϑ2, 0
)

, the matrixA has matrix
elements

a13 = a31 = 0, a23 = −a32 = Ω,

a11 = γ
(1

2
+ n+ 2kd

+ 2c|α1| cosϑ1 sinϕ+ 2c2 sin2 ϕ
)

,

a12 = ∆ωc − γ
(

c|α1| cos(ϑ1 + ϕ) + c2 sin 2ϕ
)

,

a21 = −∆ωc − γ
(

c|α1| cos(ϑ1 + ϕ) + c2 sin 2ϕ
)

,

a22 = γ
(1

2
+ n+ 2kd

− 2c|α1| sinϑ1 cosϕ+ 2c2 cos2 ϕ
)

,

a33 = γ
(

1 + 2n− 2c|α1| sin(ϑ1 − ϕ) + 2c2
)

,

~t = Tr
{

(

eiϑ2 σ− ηeq + e−iϑk ηeq σ+

− Tr{σϑ2
ηeq} ηeq

)

~σ
}

.
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Figure 1. Sinel(µ) with γ = 1 and: (1)∆ω = 0, c = 0,

Ω = 0.2976, ϑ2 = −π/2; (2) ∆ω = 1.8195, c = 0,

Ω = 1.7988, ϑ2 = −0.1438; (3) ∆ω = 0, c = 0.0896,

Ω = 0.2698,ϑ1 = π/2, ϑ2 = −π/2, ϕ = 0; (4) ∆ω =
1.6920, c = 0.1326, Ω = 1.9276, ϑ1 = 2.8168, ϑ2 =
−0.0851,ϕ = 1.2460.

andηeq = lim
t→+∞

eLf t̺0.

In the case|α2| = 0 we getSinel(µ) = 1, which is the
spectrum of a pure white noise. Indeed in this case no
fluorescence light reaches the detector and we see only
the spectrum of the fluctuations of the local oscillator,
interpreted as shot noise.

3.1 Squeezing
In general it is possible to give a description of the

output I2 in terms of a measurement of some Bose
quantum fields, to show that the value ofSinel(µ;ϑ2)
is the variance of a quadrature of the field in channel
2, the value ofSinel(µ;ϑ2 + π/2) is the variance of the
conjugate quadrature [Barchielli and Gregoratti, 2008].
Then, theHeisenberg uncertainty relations imply that

Sinel(µ;ϑ2)Sinel(µ;ϑ2 + π/2) ≥ 1.

If Sinel(µ;ϑ2) < 1 for someµ andθ2, the field is said
to besqueezed.
Some typical spectra, showing well pronounced

squeezing and produced by suitable choices of the con-
trol parameters, are given in Figure 1. The position of
the minimum can betuned by a suitable choice of the
control parameters; in Figure 1 the minima are inµ = 0
and inµ = ±2.5, with and without feedback. The lines
(1) and (2) are without feedback and the lines (3) and
(4) are with feedback. Here and in all the other graphi-
cal examples we take|α1|2 = |α2|2 = 0.45, n = 0 and
kd = 0.
Note that the Heisenberg uncertainty relations give

rise to peaks in the complementary field quadratures,
as shown in Figure 2.

3.2 Line-narrowing
By feedback control another quantum effect can be

produced, the line-narrowing. After the first observa-
tion of squeezing, Gardiner predicted that stimulating
a two-level atom with squeezed light would inhibit the
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Figure 2. Sinel(µ) with all the parameters as in the previous fig-

ure, butϑ2 → ϑ2 + π/2.

phase decay of the atom. The squeezed light would
break the equality between the transverse decay rates
for the two quadratures of the atom and one decay rate
could be made arbitrarily small, producing an observ-
able narrow line in the spectrum of the atomic fluo-
rescence light. This was seen as a “direct effect of
squeezing” and thus as a measure of the squeezing of
the incident light. Nevertheless, Wiseman showed that
this atomic line-narrowing is not only characteristic of
squeezed light, but it can also be produced by immers-
ing a two-level atom in ‘in-loop squeezed’ light. The
difference is that in the Gardiner case the other decay
rate becomes larger, while in the Wiseman case it is left
unchanged.

Now we can show that the same atomic line-
narrowing can be obtained stimulating a two-level atom
even with non-squeezed light, that is with a coher-
ent monochromatic laser in presence of a (Wiseman-
Milburn) feedback scheme based on the (homodyne)
detection of the fluorescence light. This effect is ob-
tained within the model described up to now, in a dif-
ferent region of the control parameters.

Let us take

ϕ =
π

2
, ϑ1 = π, ϑ2 = 0,

∆ω = 0, n = 0, kd = 0.

Then, in the case of no feedbackc = 0 one obtains a
spectrum which is a Lorentzian peak with widthγ:

Sinel(µ) = 1 +
2 |α2|2 Ω2

γ2 + 2Ω2

γ2

µ2 + γ2/4
.

Instead, with the optimal choice of the feedback,c =



−6 −4 −2 0 2 4 6
1

1.5

2

2.5

3

3.5

4

4.5

µ

 

 

4c2=0.45
c=0

Figure 3. Sinel(µ) for c = |α1| /2 or c = 0 andΩ = 2,

p1 = p2 = 0.45, ∆ω = 0, ϕ = π
2 , ϑ1 = π, ϑ2 = 0,

γ = 1.

|α1| /2, we get a Lorentzian of width
(

1− |α1|2
)

γ:

Sinel(µ) = 1 +
|α2|2

(

|α1|
2

2 γ2 + 2Ω2
)

(

1− |α1|
2

2

)

γ2 + 2Ω2

×

(

1− |α1|2
)

γ2

µ2 +
(

1− |α1|2
)2

γ2/4

This is the sub-natural line-narrowing effect, shown in
Figure 3.

4 Conclusions
The new results presented either are of general con-

ceptual relevance, either clarify the behaviour of flu-
orescence light and atom under coherent driving and
feedback.
First of all we have shown how to introduce the spec-

trum in quantum trajectory theory through its classical
definition (4), without ad hoc quantum definitions, but
in agreement with the axiomatic structure of quantum
measurement theory and with probability theory. We
have verified that this agreement with quantum mea-
surement theory ensures consistency with the existence
of the traced out quantum field, so that Heisenberg un-
certainty relations hold for such spectra and the squeez-
ing of the output field can be analysed.
We have shown how feedback (at least in the form à

la Wiseman-Milburn) modifies the spectrum of the free
fluorescence light and can enhance its squeezing. Many
physical effects are introduced all together: detuning,
thermal and dephasing effects, not perfect detection ef-
ficiency, control. The final formula for the spectrum
(5) is given with all the parameters introduced by these
effects.
Finally, we have shown that feedback can produce

line-narrowing in the free fluorescence light, even if the
atom is not illuminated by squeezed light, but only by
coherent light.
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