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Abstract
The process of ion flow extraction from plasma is one

of the most important objects being interesting while
creating effective electrojet engine. Due to this fact
a self-consistent problem of ion acceleration in elec-
tron cloud is considered in this research with additional
electron flux taken into account. The kinetic descrip-
tion in the case of collision absence is used. Electron
flow is described by unconventional solution of kinetic
equation which dependent not only on the energy in-
tegral. It is shown that cold ion can be accelerated to
the energy exceeding the electron temperature, i.e. ion
velocity can exceed ion-acoustic velocity.
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1 Introduction
To study the real processes of heavy ion extraction

from plasma the lot of researches is carried out which
propose the different extraction models. In work [Rie-
mann, 1991] it is shown that plasma is left by ions with
the speeds exceeding ion-acoustic velocity. In practice
temperature of electrons T significantly more than tem-
perature of ions Ti(T >> Ti) the number of the accel-
erated ions is exponential small hence the ion current
and a traction of the electrojet engine are small too.
We will note, however, the work [Kovalenko, Cherny-
shev, and Chikhachev, 2011a] studying acceleration of
a thin ionic beam. In this work it is shown that the ve-
locity of ions can surpass ion-acoustic velocity when
the beam radius is changed. In work [Sternberg and
Godyak, 2007] the condition of the accelerated stream
cold ion flux existence in the cloud of hot electrons is
found. In particular, in [Sternberg and Godyak, 2007]
it is shown that the transitional layer in plasma vac-
uum system infinite. Current of electrons is equal to
zero. Work [Kovalenko and Chikhachev, 2013] studies
conditions for the ion flux moving in the electron layer
perpendicularely to the direction of the electron flux.

In this work the maximum energy which ions can gain
in a layer, is equal the electron temperature T, however
current of ions is not exponential small. It should be
noted here that experimental works exist studying the
various aspects of the problem of the power electrojet
engine development, as example the work [Ermilov and
Kovalenko, at al., 2008] that studies the traction char-
acteristics such engine here. In the real work the con-
secutive kinetic description of ion-electronic system in
the presence of a nonzero stream of electrons is used.
Thus function of distribution of electrons depends not
only on motion integrals.

2 Problem Definition
We will describe particles by means of collisionless

kinetic equations for both electrons and ions consid-
ering the problem for the sake of simplicity as one-
dimensional. For particles by means of the kinetic eq-
uitation takes the form of:
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where m is the mass of electron, e is the charge, Φ is
a potential, x is a coordinate, p is amomentum, f is a
particle distribution function. Equation (1) always has
a solution
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,

where Ψ - arbitrary function. This solution is charac-
terized by particle zero flux Γe along axis x : Γe =
+∞∫
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If an exponential energy distribution is used Ψ =
κ0 exp(− H

κT ), the density has the form of:

ne = 2κ0

√
2πκT
m

exp

(
eΦ

κT

)
, (2)

where κ is Boltsmans constant.
To describe the non-zero electron flux we will use

equation solution (1) that is not only function of the
integral of the motion H. Equation:

f = σ
(
p−

√
2m(C0 + eΦ)

)
Ψ(H). (3)

Here σ(x) is the Heaviside function, C0 ≥ −eΦ(x) for
any x. It’s easy to make sure that equation (3) corre-
sponds to equation (1). After differentiation in accor-
dance with equation (1) we will get:
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)
,

i.e. zero. Expression (3) determines non-zero electron
flow:

Γe =

∞∫
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p
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C0

dHΨ(H).

In the case of exponential distribution Γe =
κ0κT exp

(
− C0

κT

)
. So the electron density may be ex-

pressed by the next formulae:
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(√
C0 + eΦ
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Here erf(x) = 2√
π

x∫
0

exp(−y2)dy is an error func-

tion integral. In (3) the role of the multiplier
σ
(
p−

√
2m(C0 + eΦ)

)
is substantial - on the one

hand, the shape of particle density changes, on the other
hand particle current is not equal zero. Using of a such
multiplier for the aims of the beam description gives us
the possibility to study the new type of the beam equi-
libria. Combining the motion integrals and the multi-
plier in the form of step-function one can significantly
affect on the balance of the system if the own mag-
netic field of the electron flux is taken into account (see
[Kovalenko and Chikhachev, 2013]). Note, the kinetic
equation solution with Heaviside function is used in
paper [Lohder and Ulyanov, 2013] when studying the
phenomena in the gas discharge.

By the similar way the ion flow can be described. Just
like at expression (4) for the ion density we will get:
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)
×
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,

here M is the ion mass, Ti is the ion temperature. Us-
ing asymptotic decomposition for error function inte-
gral at Ti → 0 we will get:

ni = κi
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exp
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)√
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.

Upon that Γi = κiκTi exp
(
− C1

κTi

)
, whence it fol-

lows: ni = Γi

√
M

2(C1−eΦ) . Let us equate flow density
as: Γi = n0iυ0, n0i is an initial ion density, υ0 is an
initial ion velocity and express in terms of C1 =

υ2
0M
2 .

It should be indicated that here ion description corre-
sponds absolutely to hydrodynamic description of cold
ion flow. So we get:
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Here υs =
√

κT
M , u = eΦ

κT . Let us write down Poisson
equation:
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where n0e = κ0

√
2πm
κT , ε0 is the “vacuum constant”.

After these dimensionless arguments should be intro-

duced t = x
l0
, l0 =

√
κε0T
en0e

, let us set C0

κT = ζ0. We
will get:
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3 Results of Computational Solution
Let us set solution results of equation (6), where ζ0 =

4, νi = 0.08,
υ2
0

υ2
s
= 0.1. In the function of initial condi-

tion let us set u(0) = −4, ˙u(0) = 0. Depenance of non-
dimensional potential u(t)/200 (curve III) from non-
dimensional co-ordinate is depictured in Fig.1. This so-
lution has a periodical character. It is also represented
qualities of functional dependence of ion density from
co-ordinate (I) and electron density from co-ordinate
(II). From the character of these dependencies we may
conclude: ions accelerate away from point t = −43.79
(where u = 0.016 ) to point t = 0 (where u = −4 ).
Electrons, on the contrary, decelerate in such motion.
Electrons can accelerate during the motion in the op-
posite direction: from point t = 0 to point t = −43.79.
Functional dependence of electron velocity from poten-
tial is depictured in Fig.2, curve II, curve I on this pic-
ture represented the dependence of ion velocity from
potential. Directions of the velocities strictly opposite.
Kinetic energy at the point t = 0 is determined by the
value ζ0. If this energy equals to 4.016T. It is fourfold
as much as ion temperature. The more is an absolute
value ζ0, the more is the value of kinetic energy ions at
the exit from plasma area with the electrons described
by distribution (3). This fact confirms the result of the
work [5] in which is shown that in a layer of the elec-
trons moving perpendicularly to a stream of ions, ions
can reach the value of energy which is not exceeding
electronic temperature. Flat gap is the electrode where
t = 0 under potential which is equal to −4T and the
second electrode where t = 43.7 is under potential
0.016T. Electron flow with energy more then 4T has to
fall within flat gap from electrode with negative poten-
tial from the similar electrode ions with slow velocity
enter in flat gap. These ions accelerate to kinetic energy
4T .
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Figure 1. Co-ordinate ion density-relationship (curve I), Co-
ordinate electron density-relationship (curve II) and co-ordinate po-
tential (curve III).

It should be noted that the real consideration sig-
nificantly differs from description of the system by

means of the hydrodynamic equations. In the pres-
ence of a stream of electrons the pressure of electronic
gas P is not equal to P = neT . The decision of
the self consistent system of the hydrodynamic equa-
tions is provided in work [Kovalenko, Chernyshev, and
Chikhachev, 2013].

4 Three-Part System
Three-part system shall be understood as situation,

emerging in the event when except electron flow and
ions the open interval has electrons consisting a cloud
with a zero average velocity. These particles are de-
scribed by means of usual Maxwell distribution func-
tion f ∼ exp(−H/κT ). The density of this particles
is proportional to exp(u).
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Figure 2. Dependences of the ions velocity on potential (curve
I), dependences average velocity flow of the electrons on potential
(curve II) and dependences average velocity of the electrons on po-
tential when co-existent flow and cloud (curve III).

According to mentioned above let us add at right side
of an equation (4) addend 0.01 exp(u). Then the equa-
tion for potential (6) turns into following expression:

d2u

dt2
= exp(u(t))

(
1.01− erf

√
ζ0 + u

)
(7)

− νi√
υ2
0

υ2
s
− u(t)

A minor addition leads to considerable changes in
potential solution. Let us set: ζ0 = 4, υ2

0/υ
2
s =

0.1, νi = 0.01. We also use initial conditions u(0) =

−3.8, ˙u(0) = 0. Fig. 3 shows that electron cloud pres-
ence with zero average velocity hardly influences the
behavior pattern of potential. The same figure demon-
strates the change of electron density. In such case an
additional maximum of electronic density appears at
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the same place where the maximum of ion density ap-
pears. The average electron velocity calculated with ac-
count of (because of electron cloud presence with zero
average velocity) over density detects a potential for
upward motion in the same direction that ion velocity
(please see Fig. 4). It is possible to create a mech-
anism where a simultaneous acceleration in the same
direction of electrons and ions takes place. Though
in such case electron acceleration passes “in average”
upon particle deceleration constituting electron flow.
Small difference of potential, however, appears only at
a small additive of the maxvellian electrons.
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Figure 3. Co-ordinate ion density-relationship (curve I) and
coordiante electron density-relationship (curve II). Co-ordinate
potential-relationship (curve III) in case of flow presence and consti-
tuting in electron medium when density clouds ∼ 0.01 exp(u).
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Figure 4. Coordinate ion density-relationship (curve I) and coor-
diante electron density-relationship (curve II). Coordinate potential-
relationship (curve III) in case of flow presence and constituting in
electron medium when density clouds ∼ 0.02 exp(u).

If we add to the right part (4)composed 0.02 exp(u)
instead of 0.01 exp(u) one can find that the character
of the decision will sharply change (see Fig. 4). The
decision isn’t periodic now, there are positive values
that results in divergence of the right part and the ionic

stream is locked by the own charge. The curve III in
Fig. 2 represents dependence of the electron velocity
on potential in this case dependence isn’t monotonous
velocity has an extremum, i.e. there is an area of values
of potential where there is an acceleration both the ions
and the electrons.

5 Conclusions
This research studied the behavior of ion and elec-

tronic collisionless system with self-consistent electric
field. Electrons can be represented as particle flow and
cloud flow with zero average velocity and relatively
high temperature. Cold ions can be accelerated to en-
ergy exceeding temperature of electrons, i.e. their ve-
locity can exceed ion-acoustic velocity if there an elec-
tron flow with high directing velocity. As maximum
potential difference over a particular period of the time
is determined by the value C0 = ζ0κT, the main prob-
lem is to create electron flow characterized with high
directed velocity. If ζ0 = 4 drift velocity shall consti-
tute ∼ 2υTe. In the case of both electrons and clouds
exist in the system, there is an area of values of param-
eters at which there is a simultaneous acceleration of
electrons and positively loaded ions.
The technique of the description of the self-

coordinated system of the real work can be useful to
the solution of more complex challenge — studying of
the electronic and ion bunch limited in the cross direc-
tion.
Problems of the real work were studied also in papers

[Kovalenko, Chernyshev, and Chikhachev, 2011b],
[Chikhachev, 2013].
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