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Laboratory of Dynamical Systems

CULagos, Universidad de
Guadalajara, México
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Abstract
In this work, numerical results of a nonlinear switch-

ing system that presents bistable attractors subjected to
stochastic modulation are shown. The system exhibits a
dynamical modification of the bistable attractor, giving
rise to an intermit behavior, which depends of modula-
tion strength. The resulting attractor converge to an in-
termittent double-scroll, for low amplitude modulation,
and a 9-scroll attractor for a higher applied noise ampli-
tude. A Detrended Fluctuation Analysis (DFA) applied
to the x state variable, shows a perturbations robust-
ness region, since the increase of noise does not present
changes. Due to the applied noise, the final obtained
system has higher randomness, compared with the orig-
inal one. The understanding of the dynamical behavior
of multiscrolls systems is highly important for advanc-
ing technology in communications, as well in memory
systems applications.
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1 Introduction
In many nonlinear dynamical systems, intermittency is

a common behavior, characterized by irregular burst that
modify regular behavior [Manneville & Pomeau, 1979].
Different types of intermittency can be mentioned, e.g.,
type I and on-off intermittency are related with saddle-
node bifurcations, type II and type III with Hopf and

inverse period-doubling bifurcations, respectively, and
crisis-induced intermittency with a crisis of chaotic at-
tractors [Manneville & Pomeau, 1979; Hirsh, Nauen-
berg, & Scalpino , 1982; Hirsh, Huberman, & Scalpino;
Hu, & Rudnick]. For systems that show multistable be-
havior, noise presence can be useful to influence inter-
esting dynamics as hopping attractor [Kraut, & Feudel;
Huerta-Cuellar et. al.; Pisarchik et. al.], as physical and
natural phenomenons [Huerta-Cuellar et. al.; Pisarchik
et. al; Gelens et. al.]. Also, noise can induce on-off inter-
mittency in those systems that exhibit bistable behavior
[Campos-Mejia, 2013]. A system with periodic poten-
tial in the high frequency regime could shows the occur-
rence of intermittency as the case of a pendulum, where
the linear-response theory yields maximum frequency-
dependent mobility as noise strength function [Saikia et
al., 2011].

In the case of systems that generates intermittent ac-
tivity, an analysis and characterization of the equilib-
rium points number in a Chua multiscroll system by ap-
plied noise was shown by [Arathi, Rajasekar, & Kurths].
In that sense, the generation of systems with scrolls in
their phase space, such as the Lorenz and Chua systems
[Lorenz, 1963; Chua, 1992], have been extensively stud-
ied from a dynamical point of view, being the Lorenz at-
tractor a particular case with intermittent behavior [Man-
neville & Pomeau, 1979]. Over the past few years,
the design and control of systems with multiple scrolls
have been a subject of interest for the scientific com-
munity [Echenausı́a-Monroy, & Huerta-Cuéllar], hav-
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ing a great impact in their application, such as secure
communication systems, neural modeling, generation
of pseudo-random systems, and deterministic Brownian
motion [Kwon et al., 2011; Yalcin et al., 2004; Huerta-
Cuellar et al., 2014]. Recently a bistable multiscroll fam-
ily has been presented and characterized [Echenausı́a et
al., 2018]. In such system it is possible to obtain different
behaviors by means of bifurcation parameter variation
(ζ). By considering the results shown in [Echenausı́a et
al., 2018], in this work a study on noise-induced inter-
mittency between coexisting regimes of 1-scroll behav-
ior, under the influence of external Gaussian noise, is
carried out. The observed intermitent dynamics may be
associated with on-off intermittency. The interest in in-
termittent fluctuations arises from its usefulness for both
technical applications and fundamental research. There
are some works that presents useful memory applica-
tions based on multiscrolls [Itoh & Chua, 2008; Pham et
al., 2019], in this case the applied noise could be imple-
mented to dynamically change the system memory prop-
erties.

2 Theory
Consider a set of deterministic nonlinear differential

equations, with chaotic behavior, defined as in [Campos-
Cantón et al., 2010].

χ̇ = Aχ+B, (1)

where χ = [x1, x2, x3]T ∈ R3 is the state variable, B =
[b1, b2, b3]T ∈ R3 stands for a real constant vector. The
behavior of the system is defined by the eigenvalues of
the matrix A ∈ R3×3 which is given as a linear operator
as follows:

A =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 . (2)

Discarding any combination of eigenvalues that is not
characteristic of hyperbolic-saddle-node points, that is,
the system is consistent with the Unstable Dissipative
System type I (UDS I), defined in [Campos-Cantón et
el., 2012; Ontañon et al., 2012].

A switched system is implemented, constituted by a
set of equations in form of eq. (1), in order to change
the dynamical behavior which is governed by a switch-
ing law, Si with i = 1, ..., n, and n ≥ 3. Each system
Si has a domain Di ⊂ R3, containing the equilibrium
χ∗i = −A−1i Bi. Then, the switching law governs the
SW dynamics by changing the equilibria from χ∗i to χ∗j ,
i 6= j, when the flow Φt : Di −→ R3 crosses from the
i− th to the j − th domain.

In order to generate multiscrolls dynamics, eq. (1)
must to accomplishes with the UDS I definition. A UDS
type I corresponds to equilibrium points with a real neg-
ative eigenvalue (λ1) with two complex conjugated with
positive real part (λ2, and λ3), with Σ(λ1,2,3) < 0, and a

UDS type II is defined by equilibrium points with a real
positive eigenvalue with two complex conjugated with
negative real part, with Σ(λ1,2,3) < 0 [Campos-Cantón
et al., 2010].

Multiscroll generation by means of series of saturated
functions results in a better way to control the generated
fixed points, than with Piece Wise Linear (PWL) systems
[Lü et al., 2004; Lü et al., 2006]. This paper is based on
a multiscroll generator system aimed by the jerk equa-
tion, with the implementation of a Saturated Non Linear
Function (SNLF), as switching law, resulting in the sys-
tem described by eq. (3).

ẋ = y,
ẏ = z,

ż = −α31x− α32y − α33z + α31f(x; k, h, p),
(3)

been f(x; k, h, p) the SNLF, defined as:

f(x; k, h, p) =

p∑
m=−p

fm(x; k, h), (4)

for which k > 0 is the slope of the saturated function
series, h > 2 is the saturated delay time of the saturated
function, defined by the op-amp switching speed, p is a
positive integer, m = 1, 2, . . . , n, where n defines the
number of scrolls to generate. The function segmenta-
tion is defined as follows:

fm(x; k, h) =

2k if x > mh+ 1,
k(x−mh) + k, if x−mh ≤ 1,
0 if x < mh− 1,

(5)

f−m(x; k, h) =

0 if x > mh± 1,
k(x±mh)− k, if x±mh ≤ 1,
−2k if x < mh− 1,

(6)
The SNLF contemplated for this study is constructed

based on [Echenausı́a et al., 2018], studied with a bifur-
cation parameter ζ. This ζ parameter works as an indi-
vidual control gain for the nonlinear function. This al-
lows the possibility to analyze the bifurcation diagrams
for a defined set of parameters in the model and gener-
ates more than one single attractor. The modified system
is described by:

ẋ = y,
ẏ = z,

ż = −α[x+ y + z − ζf(x; k, h, p)],
(7)

where 0 < α < 1 is a system parameter that modifies
the equilibria stability, and ζ is the bifurcation param-
eter. This modification allows to analyze the behavior
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Figure 1. (a) Bifurcation diagram that shows monostable and bistable
behavior for ζ < 0.0570, and ζ > 0.0570, respectively, correspond-
ing to eq. (7). (b) Zoom of the interest region for ζ = 0.0585, red
fringe corresponds to a bistable multiscroll attractor. (c) Phase space
(x, y), of the bistable attractor, negative part (dark blue) which cor-
responds the initial conditions [0.1, 0.1, 0.1], same ones used in this
work.

of the system through numerical simulation in a better
way. The system shown in eq. (7), can change behav-
ior from 1, 3, 5, 7, and 9-scrolls monostable attractor,
and generate six bistable 1-scroll attractors, by means of
bifurcation parameter variation.

In this work, an additive random value is applied as
additive modulation of z state of eq. (7), which is gen-
erated from the Box-Müller method defined as follows
[Box & Müller, 1958]:

ω0 =
√
−2lnU1cos(2πU2),

ω1 =
√
−2lnU2cos(2πU1),

(8)

for which U1 and U2 are random values from interval
of −1 to 1, ω0 and ω1 are independent variables with
standard deviation equal to 1, and changes its values for
each simulation step.

3 Methodology and Results
From the dynamical system in eq. (7), with a switching

law that creates a 9-scroll attractor, a bifurcation diagram
constructed, generated by a gradual change of the bifur-
cation parameter ζ, and a fixed parameter α = 0.45, is
shown in Figure 1(a). A value of α parameter higher than
0.45 causes a more restrictive dynamical behavior of the
system [Echenausı́a et al., 2018]. Figure 1(b), shows a
zoom of the region to analyze with ζ = 0.0585, which
generates a bistable behavior.

Noise addition to the eq. (7) can stimulate jumps be-
tween each of the bistable states. This bistable region
forms a double potential well, for which the system re-
sponse only have one state each time. With the noise
amplitude increasing is possible to change the average
residence times of the system until get an equilibrium of
jumps between the two states. Without loss of generality,
the equation system with the added noise is as follows:

ẋ = y,
ẏ = z,

ż = −α[x+ y + z − ζf(x; k, h, p)] +Nη,
(9)

where N is the noise amplitude, and η represents the
added noise, generated by the Box-Müller method. The
noise addition is made for each itteration of the numeri-
cal system, in order to have a perturbation for every sim-
ulation time.

Next results are obtained by numerical simulations,
by using eq. (9) in the bistable region (Figure 1(a),
red fringe), ζ = 0.0585, and fixed initial conditions
(x = 0.1, y = 0.1, z = 0.1), which generates the be-
havior shown in Figure 1(c), dark blue color. Figure 2,
shows some temporal series of the observed behavior,
where it can be seen the temporal evolution of the sys-
tem. When noise is increased, jumps between the two
possible initial states appears, then it is possible to ob-
serve that the residence time in each state comes smaller
and with similar probability.

If the applied noise has a low amplitude, probability
of jumping to the other state is low, but increasing the
noise intensity the double-well potential is tilted sym-
metrically up and down, in this way periodically raising
and lowering the potential barrier.

Figure 3 shows the (x, y) phase space of the corre-
sponding temporal series presented in Figure 2. Here it
is possible to observe the initial attractor phase space, for
a noiseN = 0, and its evolution when noise is increased.
The changes in the dynamical response presents a noisy
attractor that jumps between the commutation surfaces
of the 9-scrolls defined dynamic, from which the system
is generated.

One statistical tool used to evaluate fluctuations of sys-
tems is the Detrended Fluctuation Analysis (DFA) [Peng
et al., 1994]. The DFA allows to measure a simple quan-
titative parameter, the scaling exponent βν which char-
acterizes a signal correlation properties. The main ad-
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Figure 2. Temporal series obtained from the eq. (9) for different
noise amplitude: (a) N = 0, (b) N = 1, (c) N = 1.5, (d) N = 2.5,
(e) N = 3, and (f) N = 4. Noise amplitude values in arbitrary units.

vantage of the DFA, over many other methods, is that al-
lows the detection of long-range correlations of a signal
embedded in seemingly nonstationary time series, and
also avoids the spurious detection of apparent long-range
correlations that are an artifact of nonstationarity. Fluc-
tuation function F (ν; s) obeys the following power law
scaling relation:

F (ν; s) ∼ sβν , (10)

for which the time series is segmented in s pieces with
length ν. When the scaling exponent βν > 0.5, three
distinct regimes can be defined as follows:

1. If βν ∼ 1, DFA defines 1/f noise.
2. If βν > 1, DFA defines a non stationary or uncorre-

lated behavior.
3. If βν ∼ 1.5, DFA defines Brownian motion or Gaus-

sian noise.

In order to analyze the noise effects over the dynamical
changes of the bistable studied system, a noise amplitude
variation 0 6 N 6 4 in steps of ∆N = 0.001, was ap-
plied. Figure 4 is made by considering the average of 50
temporal series for each noise amplitude. Figure 4 shows
the evolution of the slope obtained by the DFA method,
where βν remains unchanged until a value N = 0.245.
It can be observed, from the mean line, that a change
in the slope occurs after N > 0.245, and then it con-
tinues increasing until a laminar region for βν = 1.34,

with 1.23 6 N 6 2, showing a perturbations robustness
region, then the slope value decreases slowly with the
noise amplitude increment.

From Figure 2((b)-(f)), it is possible to see an intermit-
tent behavior evolution with the noise increase. In Figure
3 it can be seen that the obtained intermittency not only
visits the commutation surfaces defined for the bistable
attractor, but also visit and lives in all the switching sur-
faces that creates the natural attractor. As can be seen in
Figure 5(b), for ζ = 0.056, the obtained behavior cor-
responds to a 9-scrolls monostable attractor, for which
each scroll have a equilibrium point, and in the case of
ζ = 0.0585, the behavior corresponds to the bistable at-
tractor which has been studied. In the case of the bistable
attractor, each scroll have oscillations around two fixed
points, depending on the initial conditions. In Table 1,
the equilibrium location for the 9-scrolls attractor and
the bistable analyzed attractor is displayed.

As mention in section 2, the equilibrium points of the
analyzed system (when N = 0), behaves according
to the equation χ∗ = −A−1[0, 0, αζf(x; k, h, p)]′, and
have the property that whenever the state of the system
start at χ∗i , it will remain at χ∗i for all future time, be-
ing the system autonomous. When N > 0, the system
equilibrium respond to the following equation, χ∗ =
−A−1[0, 0, αζf(x; k, h, p)]′ − A−1[0, 0, Nη], where η
is a time dependent function which varies in every iter-
ation, becoming the system into a non-autonomous one,
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Figure 3. Phase spaces (x, y), corresponding to the temporal series
in Figure 2, obtained from the eq. (9) for different noise amplitude:
(a) N = 0, (b) N = 1, (c) N = 1.5, (d) N = 2.5, (e) N= N = 3,
and (f) N = 4. Noise amplitude values in arbitrary units.
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Figure 4. With the increasing of the applied noise amplitude it can be
seen the evolution of the slope βν with the maximum, minimum and
mean values.

thus the system does not have equilibrium points [Khalil,
2002]. An important point to remark is that the vec-
tor field associated to linear operator A oscillates in the
range of x state, that depends of noise amplitude.

After the applied noise, the system jumps between all
the commutation surfaces unachievable for N = 0. As
seen in Figure 5, the noise amplitude 1.23 6 N 6 2
can offer the possibility to distinguish the natural attrac-
tor structure. Moreover, the induced stochastic dynamics
between the nine domains in the system can not be ob-
served in Figure 3(d), (e) and (f), because of the noise
amplitude (N > 2).

In Figure 5, a comparison between the monostable at-
tractor (1(c), dark blue color), with added noise N =
1.5, and the 9-scrolls natural attractor is shown. As men-
tion before the noise induce a visit of the nine domains
in the system, for N w 1.5, shown in Figure 5(a).

Table 1. Equilibrium points location for the analyzed attractors,
(χ∗

i , 0, 0), N = 0.

Equilibrium points for the 9-scrolls attractor, ζ = 0.056

χ∗
1 χ∗

2 χ∗
3 χ∗

4 χ∗
5 χ∗

6 χ∗
7 χ∗

8 χ∗
9

−8 −6 −4 −2 0 2 4 6 8

Equilibrium points for the bistable attractor, ζ = 0.0585

χ∗
1 χ∗

2 χ∗
3 χ∗

4 χ∗
5 χ∗

6 χ∗
7 χ∗

8 χ∗
9

−8.3 −6.2 −4.1 −2.1 0 2.1 4.1 6.2 8.3

4 Conclusion
In this work numerical simulations over a bistable at-

tractor generated by means of a multiscroll system with
added noise are presented. Results are obtained over
a bistable region which is very close of the natural at-
tractor of the system, modulated by means of Gaussian

noise. It was observed that an intermittent attractor ap-
pears between the initial states, but with the noise am-
plitude increase, stochasticity is higher and domains are
visited with the absence of fixed points. A DFA analysis
reveals that for noise amplitude N = 0.245, the inter-
mittent attractor appears, for 1.23 6 N 6 2, the fluctu-
ation analysis remains with a constant slope βν = 1.34,
and for N > 2 the behavior turns to uncorrelated, show-
ing an indistinguishable attractor in the phase space. In
the case of noise amplitude 1.23 6 N 6 2, the system
shows a constant behavior between Brownian motion
and uncorrelated fluctuations. There are several works
that presents multiscrolls attractors useful to the design
of systems with memory applications, in this case, the
added noise could be applied to dynamically change the
memory properties of the system, or in modeling sys-
tems immune to perturbations.
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Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza,
R., & Huerta-Cuellar, G. (2012). Multistate intermit-
tency and extreme pulses in a fiber laser. Physical Re-
view E, 86(5), 056219.

Huerta-Cuellar, G., Pisarchik, A. N., Kir’yanov, A.
V., Barmenkov, Y. O., & del Valle Hernández, J.
(2009). Prebifurcation noise amplification in a fiber
laser. Physical Review E, 79(3), 036204.

Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza,
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J. Lü, S. Yu, H. Leung, and G. Chen, (2006). ”Ex-
perimental verification of multidirectional multiscroll
chaotic attractors,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 53, no. 1, pp. 149-165.



CYBERNETICS AND PHYSICS, VOL. 8, NO. 3, 2019 120

Box G.E.P., Müller M.E. (1958). ”A note on the genera-
tion of random normal deviates”, Ann Math Statist, 29
, pp. 610-611.

Kramers, H. A. (1940). Brownian motion in a field of
force and the diffusion model of chemical reactions.
Physica, 7(4), 284-304.

Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M.,
Stanley, H. E., & Goldberger, A. L. (1994). Mosaic
organization of DNA nucleotides. Physical review e,
49(2), 1685.

Khalil, H. K. (2002). Nonlinear systems. Upper Saddle
River.


