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Abstract
This contribution addresses a possible description of

the chaotic behavior in multi-valued dynamical sys-
tems. An important area leading to description via the
multi-valued dynamical systems is the non-smooth dy-
namical systems theory and their applications. Exam-
ples of such applications are mechanics with dry fric-
tion, electric circuits with small conductivity, systems
with small inertia, economy, biology, control theory,
game theory, optimization, etc. The phenomenon of
the chaos in multi-valued systems is even more com-
plicated issue than in case of the single-valued ones
and deserves to be intensively studied. The most of
the existing results proves the existence of chaos in
multi-valued systems via an appropriate construction of
a homeomorphism between one selected solution from
the set of them and the bi-directional full shift of sym-
bols. The approach presented here does not require
construction of a selector on the set of solutions and
uses a more intuitive and descriptive definition of the
chaos. This novel concept is demonstrated on several
examples of multi-valued dynamical systems determin-
ing the conditions leading to the chaotic behavior.
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1 Introduction
Satisfactory solution of numerous particular problems

in mechanics, engineering sciences and other related
fields are often heavily influenced by non-smooth phe-
nomena. Imagine the noise of a squeaking chalk on a
black-board or, sometimes more pleasantly, the sounds
of stringed instruments like a violin. More relevant ap-
plications include noise generation in railway wheels,
the drilling machines, etc. Physically speaking, these
effects often are due to the fact that there are rigid bod-
ies, which are in contact (they ”stick”), whereas these
contact phases are interrupted by ”slip” phase during

which one of the bodies moves relative to another. In
addition to such behavior mainly induced by friction,
there may also be impacts between different parts of
the system.
From mathematical viewpoint, problems of this kind

are not easy to handle, since the resulting models are
dynamical systems whose right-hand sides are non-
smooth or even discontinuous. In many cases the so-
lution have to observe additional restrictions that fre-
quently appear in the form of inequality constraints.
Since many concepts from classical dynamical systems
theory do rely on the smoothness of the underlying sys-
tem or (semi-) flow, it was necessary to generalize those
concepts to cover non-smooth dynamical systems as
well, and it turned out that almost always such gen-
eralization is a non-trivial issue.
One can found a huge amount of result concerning

chaotic behavior in the case of single-valued nonlin-
ear mappings or in the case of single-valued nonlinear
differential equations. To our best knowledge, the only
one serious result concerning analysis of chaos in the
case of multi-valued systems is in [Fečkan, 1999]. In
[Fečkan, 1999], a more general case of Coulomb fric-
tion description has been studied. The author consid-
ered a perturbed system and he assumed that the unper-
turbed system is periodic and has a homoclinic trajec-
tory. Based on these assumptions he shows that per-
turbed system has a solution, which is topologically
equivalent to the bi-directional shift on a set of sym-
bols.
The goal of this contribution is to generalize the re-

sults dealing with chaotic behavior of single valued
flows to the case of the so-calledgeneralized semi-
flows, see precise definition later on. Briefly, the main
result of this paper claims that there existsat least one
trajectory of the generalized semi-flow such that for ar-
bitrary covering of the solution set, possessing certain
surjection-like property defined later on, such a trajec-
tory connects mutually all subsets of that covering in
a finite time. As a consequence, the trajectory of the
generalized dynamical semi-flow can be described (in



fact, coded) via the index set of the covering of the so-
lution set and, subsequently, the methods of symbolic
dynamics can be used to analyze its dynamics. To com-
pare with [Fečkan, 1999], our results presented in the
current paper will show the existence of chaotic behav-
ior as well. Moreover, noa priori hypothesis concern-
ing the existence of homo/heteroclical trajectory will
be needed here.
To perform this idea in detail, the recent theoretical

result of [Beran, 2009] and techniques developed there
will be used. The corresponding conditions obtained in
[Beran, 2009] are rather general, therefore,more spe-
cific conditions will be developed in this paper that can
be used to analyze particular dynamical systems in a
much more comfortable way. Several examples will
illustrate these new theoretical results.
The rest of the paper is organized as follows. The next

section summarizes some preliminaries and terminol-
ogy to be used later on. Main results are collected in
Section 3, while illustrative examples are given in Sec-
tion 4. The last short section draws conclusions and
provides some outlooks for the future research.

2 Preliminaries
Some basic notions are repeated in this section. In-

terested reader is referred to [Beran, 2009] for further
details.
Definition 1. A generalized semiflowG on metric

space (not necessarily complete)X is a family of maps
ϕ : [0,∞) −→ X (calledsolutions) satisfying the hy-
potheses:
(H1) (Existence). For eachz ∈ X there exists at least

oneϕ ∈ G with ϕ (0) = z.
(H2) (Translates of solutions are solutions). If
ϕ ∈ G and τ ≥ 0, thenϕτ ∈ G, whereϕτ (t) ,

ϕ (t+ τ) , t ∈ [0,∞)
(H3) (Concatenation). If ϕ, ψ ∈ G, t ≥ 0, with
ψ (0) = ϕ (t) thenθ ∈ G, where

θ(τ) ,

{

ϕ (τ) for 0 ≤ τ ≤ t,
ψ (τ − t) for t < τ

(H4) (Upper-semicontinuity with respect to initial
data). Consider the sequence of flows{ϕj}∞j=1 ∈ G,
with ϕj(0) → z asj → ∞, then there exists a subse-
quence{ϕµ} of {ϕj} andϕ ∈ G with ϕ (0) = z such
thatϕµ(t) → ϕ (t) for eacht ≥ 0.
Remark. Let G be a generalized semiflow and let
E ⊂ X . Define fort ≥ 0

T (t)E , {ϕ (t) |ϕ ∈ G with ϕ (0) ∈ E} ,

so thatT (t) : 2X −→ 2X , where2X is the space
of all subsets ofX . It follows from (H2), (H3) that
{T (t)}t≥0 defines a semigroup on2X . Note that (H4)
implies thatT (t) {z} is compact for eachz ∈ X, t ≥
0.

Notation. The expressionϕ (·) ∈ G (x) means the so-
lutionϕ (·) that starts atx ∈ X .
If for eachz ∈ X there is exactly oneϕ ∈ G with
ϕ (0) = z thenG is called asemiflow.
Definition 2. The generalized semiflowG is said to be

upper-semicompactfromX toC ([0,∞) ;X) (C means
a space of continuous mappings from[0,∞) intoX) if
for any solutionϕn ∈ X converging tox ∈ X and for
any generalized semiflowϕn (·) ∈ G starting atϕn,
there exists a subsequence ofϕn (·) converging to a
generalized semiflowϕ (·) ∈ G uniformly on compact
intervals.
Definition 3. LetD be a closed set and let us consider

a sequence of nonempty closed subsetsSn ⊂ D, n ∈
N ∪ 0 , S = {Sn}, such thatSn ∩ Sn+1 6= Ø. Let
ϕ (·) ∈ G (x) be a solution. We say thatS forms a
ϕ (·)-chainwhen there exists a nondecreasing sequence
of times0 ≤ t0 ≤ t1 ≤ . . . ≤ tn ≤ . . . such that
for all n ≥ 0, for any t ∈ [tn, tn+1] , ϕ (t) ∈ Sn and
ϕ (tn+1) ∈ Sn+1.
Definition 4. LetD be a closed set and let us consider

a sequence of nonempty closed subsetsSn ⊂ D and
we assume that there existsT < +∞ such that for each
nonnegativen and for eachz ∈ Sn+1 there existsx ∈
Sn with solutionϕn (·) ∈ Sn and existsτ ∈ [0, T )with
ϕ (τ) = z, then the systemS = {Sn} is called to be
T − surjective under G. WhenT −→ +∞, then the
systemS = {Sn} is called to besurjective under G
Definition 5. LetD ⊂ X be a constrained set. A solu-

tion ϕ (·) is locally positivelyD-invariant when there
existsT > 0 such that for eacht ∈ [0, T ] we have
ϕ (t) ∈ D. WhenT = +∞ we callϕ (·) positivelyD-
invariant. When allϕ (·) ∈ G are (locally) positively
D-invariant, we say that generalized semiflowG is (lo-
cally) positivelyD-invariant.
Definition 6. The generalized semiflowG possesses

thechaotic behaviouron the compact setD, if for any
its at most countable closed coveringS = {Sm}m∈I ,
D ⊂

⋃

m∈I Sm, I being a suitable index set, and any
sequence{m0,m1, . . . ,mn, . . .} ⊂ I there existsat
least onesolutionϕ (·) ∈ G and a nondecreasing se-
quence0 ≤ t0 ≤ t1 ≤ . . . ≤ tn ≤ . . . such that system
S := {Sm}m=m0,m1,m2... is surjective underϕ (·) ∈ G
with ϕ(ti) ∈ Sm〉

, i = 0, 1, . . ..
Theorem A [Beran, 2009].LetD be a compact sub-

set. Assume:

1. generalized semiflowG is positivelyD-invariant
and upper semicompact,

2. let any coveringS be T -surjective underG for
someT < +∞.

Then the generalized semiflowG possesses the chaotic
behaviour.

3 Main results
In this section, we formulate the main results of our

contribution. To start with, some basic definitions are
repeated, [Aubin, Cellina, 1984].



Definition 7. Let J = [a, b] ⊂ R. Then we denote
byL1(J) the Banach space of Lebesgue integrableψ :
J → R = R ∪ {−∞,∞} with norm|ψ|1 =

∫

J
|ψ| dt.

Definition 8. Given X = Rn, J = [0, a] ⊂
R, a closedD ⊂ X , a multivalued mappingF :
J × D → 2X\{∅}, we define a norm‖F (t, x)‖ =
sup {|y| : y ∈ F (t, x)}.
Definition 9. Tangent coneTD(x), x ∈ D, where
ρ(x,D) = infd∈D |x− d| is defined as follows
TD(x) =

{

y ∈ X : limλ→0+λ
−1ρ (x+ λy,D) = 0

}

.
To present the main results of the current paper, we

restrict ourself to the case of finite-dimensionalX =
Rn. The main object of our investigation is initial value
problem

u̇ = du
dt

∈ F (t, u)
a.e. on J = [0, a]
u(0) = x ∈ D ⊂ X







(1)

with F : J × D → 2X\{∅}. Solution of (1) means
the Filippov solution, that means following [Filippov,
1988]: u : [0, τ [→ Rn is an absolutely continuous
function so that, for almost allt ∈ [0, τ [ we have
du
dt

∈ F̃ (t, u), whereF̃ (t, u) is a convex regularization
of F (t, u), see [Filippov, 1988].
The purpose of the following theorem is to give tech-

nical conditions to guarantee the valididty of the As-
sumption 1. of the Theorem A.
Theorem 1.Let Y = {u ∈ CX(J) : u(t) ∈ D on J}

with |u|0 = maxJ |u| and beSol(x) ⊂ Y the solution
set of (1). LetF (t, ·) is u.s.c.,F (·, x) is measurable,
let ‖F (t, x)‖ ≤ c(t)(1+ |x|) onJ ×D andc ∈ L1(J).
If F (t, x) ∩ TD(x) 6= ∅ on [0, a) ×D, then (1) has an
a.c. solution for everyu0 ∈ D andSol(x) is compact
andSol(·) : D → 2Y \{∅} is u.s.c.

Proof. Due to length of the proof, we give here only a
sketch. The proof consists from a chain of steps:

1. We assume thatD is compact.
2. Using the Gronwall’s Lemma, it can be shown that

‖F (t, x)‖ ≤ c(t)(1 + |x|) on J ×D implies that
‖F (t, x)‖ ≤ 1. It is only a technical result.

3. The solution setSol(.) is upper semi continuous.
4. We define a mappingpt : CX(J) → X by
pt(u) = u(t), t ∈ J , That mapping is continu-
ous.

5. We define a setPt(x) = pt ◦ Sol(x) =
{u(t) ∈ X : u ∈ Sol(x)} , t ∈ J

6. Then it can be shown thatPt : D → 2D\{∅}
is upper semi continuous and has compact values
∀ t ∈ J �

In order to guarantee that also the Assumptions 2 of
the Theorem A is satisfied, and also the existence of at
least one covering in Definition 6, one needs the global
compactness and the connectedness of the solution set
Sol. These prerequisites are provided by the following
theorem.

Theorem 2. LetX = Rn, J = [0, a] ⊂ R, D ⊂ X
be closed convex,F : J ×D → 2X\{∅} have closed
convex values and be such thatF (·, x) has a measur-
able selection,F (t, ·) is u.s.c.,F (t, x) ⊂ TD(x) on
[0, a) × D and‖F (t, x)‖ ≤ c(t)(1 + |x|) on J × D
with c ∈ L1(J). Let x ∈ D. The the setSol =
⋃

x∈M Sol(x) is compact and connected.

Proof. Proof of that theorem due to its length will be
also only sketched:

1. We assume thatD = X .
2. Using the Gronwall’s Lemma, it can be shown that

‖F (t, x)‖ ≤ c(t)(1 + |x|) on J ×D implies that
‖F (t, x)‖ ≤ 1. It is only a technical result.

3. Let {φλ} is a locally Lipschitz partition of
unity subordinate to some locally finite refinement
Uλ, λ ∈ Λ of {Brn(x) : x ∈ X} with rn = 3−n

andxλ is such thatUλ ⊂ Brn(xλ).
4. We define approximation Fn(t, x) =

∑

λ∈Λ φλ(x)Cλ(t) with Cλ(t) =
convF (f,B2rn(x)) onJ ×X .

5. It can be shown thatF (t, x) ⊂ Fn+1(t, x) ⊂
Fn(t, x) ⊂ convF (f,B3rn(x)) onJ ×X .

6. We haveS(x) ⊂ Sn+1 ⊂ Sn andSn is compact.
7. It can be shown thatSn is contractible.
8. Sequence(un) with un ∈ Sn for n ≥ 1 has a uni-

formly convergent subsequence with limit inS9x)
and we havedist(Sn, S(x)) → 0 asn → ∞ be-
causeS(x) ⊂ Sn is compact. As the setsSn are
connected thenS(x) cannot be the union of two
nonempty disjoint compact subsets. �

In the case of maximal monotone multivalued maps
in Hilbert space, which will be useful in our example,
e.g. [Aubin, Cellina, 1984], is the situation much more
simple.
Definition 9. A multivalued mapA from Hilbert space
X to Hilbert spaceY is calledmonotoneif and only
if ∀x1, x2 ∈ Dom(A), ∀vi ∈ A(Xi), i = 1, 2 =⇒
〈v1 − v2, x1 − x2〉 ≥ 0.
Definition 10. A monotone multivalued map ismaxi-
mal if there is no other monotone multivalued map̃A
whose graph contains strictly the graph ofA.
We point out some remarks.
A multivalued map is monotone (maximal monotone)

if and only if its inverseA−1 is monotone (maximal
monotone).
As a consequence of Zorn’s lemma is the graph of
any monotone multivalued map contained in the graph
of maximal monotone multivalued map, because the
union of an increasing family of graphs of monotone
multivalued maps is obviously the graph of a monotone
multi-valued map.
As a direct consequence of the definition, we have

the following useful criterion to check ifu belongs to
A(x).
Theorem 3. A multivalued mapA is maximal mono-

tone if and only if the following statements are equiva-



lent:

∀(y, v) ∈ Graph(A), 〈u− v, x− y〉 ≥ 0
u ∈ A(x).

}

(2)

The next theorem guaranties the fulfillment of the con-
ditions of the Theorem 1 and Theorem 2 in the case of
maximal monotone multivalued maps:
Theorem 4.LetA be maximal monotone multivalued

map. Then:

a Its images are closed and convex
b Its graph is strongly-weakly closed in the sense that

if xn converges tox and ifun converges weakly to
u, thenu ∈ A(x).

Proof. To prove the statement a), one can see that
A(x) is the intersection of the closed half-spaces
{u ∈: 〈u− v, x− y〉 ≥ 0} in the case when(y, v) ∈
Graph(A). So,A(x) is closed and convex.
To prove the statement b), we suppose thatxn con-
verge to x and simultaneouslyun ∈ A(xn) con-
verge weakly tou. Let (y, v) ∈ Graph(A). Then
〈un − v, xn − y〉 ≥ 0 implies, by the limiting process,
that 〈u− v, x− y〉 ≥ 0. Thus,u ∈ A(x) using the
Theorem 3. �

4 Example
In this section, we will apply the theoretical results to

two examples.
Example 1 We consider a generalized Lorenz sys-

tem with discontinuous right hand side(ẋ, ẏ, ż)⊤ =
f(x, y, z) of the form:

ẋ = −σx+ σy
ẏ = rx− y − Sign(y) |x| z
ż = −bz + |xy|

(3)

The differential inclusion associated with this dis-
continuous system is(ẋ, ẏ, ż)T ∈ F (x, y, z) where
F (x, y, z) is the convex regularization off(x, y, z),
which has the following form:

F (x, y, z) =





−σx+ σy
rx− y − Sign(y) |x| z
−bz + |xy|



 , y 6= 0,

F (x, y, z) =





−σx
[

rx − |xz| , rx+ |xz|
]

−bz



 , y = 0.

We try to estimate the domain of existence of the
chaotic attractor. In order to do the estimate, we will
construct a Lyapunov function to the system. We start
with a general form of the Lyapunov function:

V (x, y, z) = α(δx+ ξ)2 + β(ǫy + ρ)2 + γ(µz + τ)2

whereα > 0, β > 0, γ > 0, δ, ǫ, µ, ξ, ρ, τ are
parameters to determine. We evaluate the gradient ofV
for both casesy 6= 0, y = 0 and we asses a maximum
of that gradient from above. For both cases one has the
following:

max 1
2 V̇ (x, y, z) ≤ −ασδ2x2 − βǫ2y2 − γbµ2z2 +

ασδ2xy + (βǫ2r + γµτ) |xy| + βǫρ |xz| + (γµ2 −
βǫ2) |xy| z−(ασδξ−βrǫρ)x−(βǫρ−ασδξ)y−γµbτz.

Now, if we chooseτ = −βǫ2r/γµ andγµ2 = βǫ2,
the right hand sidec(x, y, z) of the above inequality
takes the form

− 1
2c(x, y, z) = ασδ2x2 + βǫ2y2 + γµ2bz2 −

ασδ2xy − βǫρ |xz| + (ασδξ − βrǫρ)x + (βǫρ −
ασδξ)y + γµbτz.

One can easily see that the functionc(x, y, z) has the
form of general quadric, so we can use a set of trans-
formations in order to simplify the form of the function
c(x, y, z). After a lengthy calculations and final choice
of parametersα = σ, β = γ = ǫ = µ = 1, ξ = ρ =
0, τ = −r, δ = 1/σ the functionc(x, y, z) takes the
form

−
1

2
c(x, y, z) = x2 + y2 + bz2 − xy − rbz

The last evaluation that is needed is to find out the

sup
{(x,y,z):c(x,y,z)<0}

V (x, y, z).

To do that, we utilize the very well known Lagrange
multipliers method. After a rather long calculations,
we get the result

sup
{(x,y,z):c(x,y,z)<0}

V (x, y, z) = r2.

Consequently, we have estimated the domain of exis-
tence of the chaotic attractor by the manifold

1

σ
x2 + y2 + (z − r)2 ≤ r2.

Due to compactness of that domain and due to the con-
vex regularization of the equation (3), we can con-
clude that all the conditions of Theorem A are satis-
fied thus we have proved the existence of a chaotic
solution in the above domain. In fact, if we choose
σ = 10, r = 28.5, b = 2.5, we obtain the traditional
chaotic solution of the Lorenz system. We can con-
clude that the traditional chaotic solution of the Lorenz
system is one of the more possible chaotic solutions of
the general differential inclusion (3).



Example 2 Now, we will apply previous theoretical
results to a practical problem. We have chosen a prob-
lem of modeling of the pendulum with friction, [Awre-
jcewicz, Lamarque, 2003].
Let us consider a forced pendulum with a viscous
damping and Coulomb friction. This pendulum cor-
responds to the model:

ẍ+ aẋ+ λsin(x) + αSign(ẋ)− f(t) ∋ 0

where ẋ := dx
dt
, ẍ := d2x

dt2
, λ ∈ R, α ∈ R+ and

Sign(·) denotes the graph of the functionSign(u) =
−1 if u < 0, Sign(u) = +1 if u > 0, Sign(u) =
[−1, 1] if u = 0. This model has to be understood as a
differential inclusion.αSign(ẋ) is the expression of a
Coulomb friction applied to the pendulum. Hereafter,
we choose a particular expression of the external forc-
ing f(t) = f sin(ωt), f ∈ R, ω ∈ R.
The previous model can be written in an obvious way

in the form of a first order differential inclusion:

Ẏ+

[

y2
ay2 + λ sin(y1)− f(t)

]

+

[

0
αSign(y2)

]

∋

[

0
0

]

.

This relation gives that

Ẏ + F (Y, t) +H(Y ) ∋ 0, (4)

whereY = (y1, y2)
⊤ = (x, ẋ)⊤. The initial conditions

areY (t0) = Y0 = (x0, ẋ0)
⊤ andx0 ∈ [−π, π] ∋ ẋ0.

Moreover,F is clearly a Lipschitz-continuous map:
for usual Euclidean scalar product(·, ·) and its associ-
ated norm‖·‖ of R2 it holds that:∀t ∈ R, ∀(Y, Z) ∈
R2 × R2, Y = (y1, y2)

T , Z = (z1, z2)
T we have

‖F (Y, t)− F (Z, t)‖ ≤ (1 + |a|+ |λ|) ‖Y − Z‖.
Further, let us show thatH is a monotone opera-

tor. Let ∀Y = (y1, y2)
T ∈ R2, ∀Z = (z1, z2)

T ∈
R2, ∀U = (u1, u2) ∈ R2, ∀V = (v1, v2) ∈ R2. Then
for U ∈ H(Y ), V ∈ H(Z) we have(V −U,Z−Y ) =
α(v2 − u2, z2 − y2) ≥ 0 because the functionSign is
monotone.
It is easy to show thatH is maximal because(I+µH)

is invertible for every realµ ≥ 0. Due to [Brezis,
1973], there exists unique solution of differential in-
clusion (3).
As a result, the operatorA = F + H meets the im-

plication of the Theorem 4. So, the conditions of the
Theorem 2 are fulfilled. Accordingly to the Theorem
A, one can stated that the chaotic solution exists for
the differential inclusion (6). This result coincides with
the results of [Awrejcewicz, Lamarque, 2003] where
chaotic behavior has been observed by numerical ex-
periments in the case of parametersa = 0.052, λ =
0.87, f = 0.586, ω = 0.666, α = 0.144.

5 Conclusion and outlooks
The analysis of chaos in the case of multi-valued

nonlinear dynamical systems, modeled by differential

inclusions, has been presented here. Chaotic phenom-
ena in the case of multi-valued dynamical systems are
still at the beginning of their analysis, even the notion
of the chaos itself is still open and discussed. Similarly
to previously existing research, the results presented
in the current paper shows the existence of chaotic
behavior. Moreover, noa priori hypothesis concerning
the existence of homo/heteroclical trajectory is needed
here. Conditions are illustrated on several examples.
On the other side, design of an efficient numerical
method to compute a particular chaotic solution
remains an open problem yet to be investigated.
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