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Abstract
We study the asymptotical control theory for one of

the simplest distributed oscillating system — the closed
string under a bounded load applied to a single distin-
guished point. We find exact classes of the string states
that allows complete damping, and asymptotically ex-
act value of the required time. We specify the structure
of the asymptotically optimal feedback control, which
is dry-friction like. We explicitly describe the singular
arcs of the control.
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1 Introduction and the problem statement.
In this paper we apply a technique, introduced in

[Ovseevich, Fedorov 2016; Ovseevich, Fedorov 2013],
to control of a simple distributed system, the closed
string under an impulsive control applied to a fixed
point in the string. The phase space S of the system
consists of pairs f = (f0, f1) of distributions on a one-
dimensional torus T , and the motion is governed by the
string equation

∂2f

∂t2
=
∂2f

∂x2
+ uδ, |u| ≤ 1. (1)

Here, x ∈ [0, 2π] is the angle coordinate on the torus,
t is time, f0 = f, f1 = ∂f

∂t , δ is the Dirac δ-function.
In other words, S is the space of initial data for (1). It
is clear, that any solution of (1) with zero initial data is
even. This is why we assume that S consists of pairs
f = (f0, f1) of even distributions. The equation de-
scribes oscillations of the closed homogeneous string
under a bounded load applied to a fixed point (zero).
Our goal is to design an easily implementable feed-

back control for damping the oscillations. This means
that we do not necessarily want to stop the motion of
the string as a whole, so that that our target manifold C
consists of pairs of constants C = {(c0, c1)∗ ∈ R2 ⊂

S}. Another useful point of view is to take the factor-
space S = S/C as the phase space of our system, and
try to reach zero in this space. This is reasonable, be-
cause the target space C is invariant under the natural
flow, associated with the string equation.
In what follows, we deal with a class of problems

of minimum-time steering from the initial state to a
terminal manifold C consisting of a pair of constants
{(c0, c1)∗ ∈ R2 ⊂ S}. More specifically, we study
three problems:

1. Complete stop at a given point: C = 0
2. Stop moving: C = R× 0
3. Oscillation damping: C = R2

2 String as a mechanical system.
The equations of motion of the free string (1) are that

of the following Lagrangian system, where q is an even
function such that ∂q∂x ∈ L2(T ), and the Lagrangian

L(q, q̇) =
1

2

∫
T
|q̇|2(x) dx−1

2

∫
T

∣∣∣∣ ∂q∂x
∣∣∣∣2 (x) dx−uq(0),

(2)
so that 1

2

∫
T |q̇|

2 dx is the kinetic energy, and
1
2

∫
T

∣∣∣∂f∂x ∣∣∣2 dx is the potential energy of the system.
The Lagrangian corresponds to the Hooke’s law: the
strain (deformation) is proportional to the applied
stress. In terms of the Lagrangian the stress at point
x is δL

δq (x) = ∂q
∂x (x), and the strain at x is ∂q

∂x (x), so
that the coefficient of proportionality is 1.
The string also allows for a Hamiltonian description.

The phase space is then the set of pairs (p, q), where p
is an (even) function from L2(T ), q is an (even) func-
tion from the space N of functions such that ∂q

∂x ∈
L2(T ), and the Hamiltonian

H(p, q) =
1

2

∫
T
|p|2(x) dx+

1

2

∫
T

∣∣∣∣ ∂q∂x
∣∣∣∣2 (x) dx+uq(0).

(3)



The canonical symplectic structure ω = dp∧dq is given
by ω ((X,X ′), (Y, Y ′)) = 〈X,Y ′〉 − 〈X ′, Y 〉. Here
X,Y ∈ L2(T ), X ′, Y ′ ∈ N , and the angle brackets
stand for the scalar product in L2(T ).
Finally, the Pontryagin Hamiltonian Hpont in “coor-

dinates” f = (f0, f1) and adjoint variables x = (ξ0, ξ1)
takes the form

Hpont(f, x) = 〈f1, ξ0〉+ 〈∆f0, ξ1〉+ |ξ1(0)|. (4)

3 The support function of reachable sets.
The first issue we deal with is that of controllability.

We approach it by computation of the support function.
The approach has much in common with that of [Lions
1988].
To make a comparison with the finite-dimensional

case clear, we rewrite the governing equation in the
form of first-order system

∂f

∂t
= Af +Bu, |u| ≤ 1. (5)

where A =

(
0 1
∆ 0

)
, ∆ = ∂2

∂x2 , and B =

(
0
δ

)
. We

commence with computing the support function H =
HD(T )(ξ) of the reachable set D(T ), T ≥ 0 of system
(5) with zero initial condition. In other words, we have
to find H = supu〈f(T ), ξ〉, where ξ ∈ S∗ is a dual
vector, and the sup is taken over admissible controls.
Towards this end, we extend ξ = (ξ0, ξ1) to the solution
of the Cauchy problem

∂ξ

∂t
= −A∗ξ, ξ(T ) = ξ, (6)

where A∗ =

(
0 ∆
1 0

)
is the adjoint operator to A.

These equations are exactly the equations for the ad-
joint variables of the Pontryagin maximum principle.
We have

d
dt 〈f(t), ξ(t)〉 = 〈Af +Bu, ξ〉 − 〈f, A∗ξ〉 =

〈Bu, ξ〉 = u(t)ξ1(0, t).

Now, a standard formal computation shows that

H = HD(T )(ξ) = sup|u|≤1

∫ T
0
u(t)ξ1(0, t)dt =∫ T

0
|ξ1(0, t)|dt.

(7)

The reachable sets D(T ), T ≥ 0 are closed in the
standard topology of distributions, and of course they
are convex. Therefore they are uniquely defined by
their support functions.

Now we can characterize the vectors f reachable from
zero in time T as follows:

f ∈ D(T )⇔ 〈f, ξ〉 ≤
∫ T

0

|ξ1(0, t)|dt for any ξ ∈ S∗.
(8)

Here, the function x, t 7→ ξ1(x, t) is defined via solu-
tion of Cauchy problem (6).
In particular, the space D generated by vectors f ∈⋃
T≥0D(T ) reachable from zero in an arbitrary time

T ≥ 0 is the dual space to the Frechet space of vectors
ξ with finite norms

‖ξ‖ = ‖ξ‖T =

∫ T

0

|ξ1(0, t)|dt (9)

for any T > 0. This space D coincides with the set of
vectors reachable from zero in an arbitrary time T ≥ 0
by means of a bounded (not necessarily by 1) control.
It is not difficult to compute ξ1(0, t) in terms of the

Fourier coefficients of the functions ψ = ξ1 and φ =
ξ0. Suppose that

ψ(x, t) =

∞∑
−∞

ψn(t)einx (10)

is the Fourier expansion of ξ1. Since ψ is an even and
real distribution, the coefficients ψn are real, and ψn =
ψ−n, so that (10) is, in fact, the cosine-expansion:

ψ(x, t) =

∞∑
n=0

ψn(t) cosnx. (11)

The quantity we want to compute is

‖ξ‖ =

∫ T

0

|ξ1(0, t)|dt =

∫ T

0

∣∣∣∑ψn(t)
∣∣∣ dt.

From (6) we immediately conclude that for n 6= 0

ψn(t) = eintan + e−intbn,

where an, bn are constants. For n = 0 we haveψ0(t) =
a0 + b0t. It is clear that for n 6= 0

an =
1

2

(
ψn +

φn
in

)
, bn =

1

2

(
ψn −

φn
in

)
,

where φn is the nth Fourier coefficient of φ, and

a0 = ψ0, b0 = φ0.

The Fourier coefficients of φ, like that of ψ, are real,
and even with respect to n.



3.1 Natural norm in the dual space
By an easy computation we conclude that

‖ξ‖ = ‖ξ‖T =∫ T
0

∣∣∣∑n 6=0

(
ψn cosnt+ φn

n sinnt
)

+ ψ0 + φ0t
∣∣∣ dt.
(12)

Suppose that T is ≥ 2π. Then, the Banach norm ‖ξ‖ is
equivalent to the following more familiar Sobolev-type
norm

‖ξ‖′ = ‖ξ1‖1 + ‖η‖1. (13)

Here, ‖g‖1 =
∫ T/2
−T/2 |g| dt is the usual L1-norm, and

η(t) =
∫ t

0
ξ0(x)dx. Indeed, denote by f the integrand

f(t) =
∑
n 6=0

(
ψn cosnt+

φn
n

sinnt

)
+ ψ0 + φ0t.

The norm ‖ξ‖ is equivalent to ‖f‖1 =
∫ T/2
−T/2 |f | dt =∫ T/2

−T/2 |f
+ + f−| dt, where

f+(t) =
∑
n 6=0

ψn cosnt+ ψ0 = ξ1(t),

resp.

f−(t) =
∑
n 6=0

φn
n

sinnt+ φ0t = η(t)

is even, resp. odd part of the function f . In-
deed, put g(t) = f(t) − φ0t. Then, ‖ξ‖ is equiv-
alent to

∫ T
0
|g|dt + |φ0|, while ‖f‖1 is equivalent to∫ T/2

−T/2 |g|dt+ |φ0|. Since the function g is 2π-periodic,
and intervals of integration have length T ≥ 2π, both
integrals

∫ T
0
|g|dt, and

∫ T/2
−T/2 |g|dt are equivalent to∫ 2π

0
|g|dt.

The L1-norms of functions f± can be estimated via
the L1-norm of f :

‖f±‖1 ≤ ‖f‖1.

Therefore, ‖ξ‖′ = ‖f+‖1 + ‖f−‖1 ≤ 2‖f‖1. On the
other hand, it is obvious that

‖f‖1 ≤ ‖f+‖1 + ‖f−‖1 = ‖ξ1‖1 + ‖η‖1 = ‖ξ‖′.

We conclude that the norms ‖ξ‖′ and ‖ξ‖ are equiva-
lent indeed. Therefore, if T ≥ 2π the dual space to the
Banach space with norm ‖ξ‖ coincides with the space

of pairs f = (f0, f1), where ∂f0
∂x ∈ L∞, and f1 ∈ L∞.

Thus, it is possible to damp the string, where the ini-
tial state f = (f0, f1) possesses these properties, by a
bounded load applied to a fixed point. Here, by damp-
ing we mean the complete stop, when not just oscilla-
tions, but also the displacement of the string as a whole
is forbidden.

Remark. Our arguments show that the equivalence
class of the norm ‖ξ‖T does not depend on T provided
that T ≥ 2π. Theorems 1, 2 give a more quantitative
statement of this independence of T .

3.2 Damping the oscillations
In order to deal with damping oscillations only, it suf-

fices to make an analog of previous computations in the
factor-space S/C. The corresponding support functions
are almost the same as those previously found. We just
have to assume that the zero-mode coefficients φ0, ψ0

of the dual vectors ξ are zero. Then, the formula for
support functions of the corresponding reachable sets
D(T ) takes the form:

HD(T )(ξ) =
∫ T

0

∣∣∣∑(
ψn cosnt+ φn

n sinnt
)∣∣∣ dt

=
∫ T

0

∣∣ξ1(y) +
∫ y

0
ξ0(x)dx

∣∣ dy.
(14)

Basically the same, but simpler arguments than that of
previous subsection 3.1, prove that states f = (f0, f1),
where ∂f0

∂x ∈ L∞, and f1 ∈ L∞ are exactly those that
can be damped.

4 The shape of the reachable set D(T )
By following [5] one can easily find an asymptotic

formula for the above support function (12). For
T > 0 define a linear isomorphism C(T ) from S
to S by C(T )f = 1

T (f0, f
T
1 )∗, where gT (t) =∑

n 6=0 gn cosnt+ 1
T g0, if g(t) =

∑
n 6=0 gn cosnt+g0.

It is clear that

HC(T )D(T )(ξ) =

1
T

∫ T
0

∣∣∣∑n 6=0

(
ψn cosnt+ φn

n sinnt
)

+ ψ0 + φ0

T t
∣∣∣ dt,

where ξ is the pair (ξ0, ξ1), and ξ0(x) =∑
φn cosnx, ξ1(x) =

∑
ψn cosnx.

Theorem 1. Consider problem (1) from the Introduc-
tion, corresponding to the terminal manifold C = 0.
Then, as T →∞ we have the following limit formula:

lim
T→∞

HC(T )D(T )(ξ) = 1
2π

∫ 2π

0

∫ 1

0
|f(t, τ)|dtdτ

(15)
where f =

∑
n 6=0

(
ψn cosnt+ φn

n sinnt
)

+ψ0+φ0τ .

Remind, that the shape Sh Ω of a set Ω ⊂ S is the orbit
of the group of linear (topological) isomorphisms of the



space S acting on Ω. In terms of shapes one can say that
the limit shape Sh∞ = lim

T→∞
ShD(T ) is related to the

convex body Ω corresponding to the support function

HΩ(ξ) =
1

2π

∫ 2π

0

∫ 1

0

|f(t, τ)|dtdτ, (16)

where f =
∑
n 6=0

(
ψn cosnt+ φn

n sinnt
)

+ψ0+φ0τ .
This means that the shape of the convex set with sup-
port function (16) coincides with Sh∞. Similarly, in
the reduced space S we have

Theorem 2. Consider problems (2)-(3) from the In-
troduction, corresponding to the terminal manifolds
C = R × 0, or C = R2. Then, the following limit
formula holds:

lim
T→∞

1
THD(T )(ξ) =

1
2π

∫ 2π

0

∣∣∣∑(
ψn cosnt+ φn

n sinnt
)∣∣∣ dt =

1
2π

∫ 2π

0
|ζ(t)| dt.

(17)

where ζ(t) = ξ1(t) +
∫ t

0
ξ0(x)dx.

Note that the operator of multiplication by 1
T in the

factor-space S is induced by the operator C(T ), and
(17) describes the limit shape lim

T→∞
ShD(T ). Denote

by Ω the convex body such that its support function is
given by the right-hand side of (17):

HΩ(ξ) = 1
2π

∫ 2π

0

∣∣∣∑(
ψn cosnt+ φn

n sinnt
)∣∣∣ dt

= 1
2π

∫ 2π

0
|ζ(t)| dt.

(18)
According to theorem 2 the set TΩ is an approximation
of D(T ) if T is large.

5 Dry-friction control
Our control design is based on the following idea: The

optimal control at state f implements the steepest de-
scent in the direction normal to boundaries of the reach-
able sets D(T ). Our control implements the steepest
descent in the direction normal to boundaries of the ap-
proximate reachable sets TΩ, where Ω is defined via
(18). This means that in notations (17)

u(f) = − sign〈B, ξ〉 = − sign ξ1(0) = − sign ζ(0),
(19)

where the momentum ξ is to be found via the equation

T−1f =
∂HΩ

∂ξ
(ξ), (20)

or, equivalently, f = (f0, f1), where

T−1f0(x) = −
∫ x

0
(sign ζ(y))−dy,

T−1f1(x) = (sign ζ(x))+,
(21)

where the notation f± stands for even/odd part of the
function f :

f±(x) =
1

2
(f(x)± f(−x)). (22)

These identities are to be understood as inclusions, be-
cause the sign-map is multivalued. Namely, their pre-
cise meaning is

T−1f0(x) = −
∫ x

0
φ(y)−dy,

T−1f1(x) = ψ(x)+,
(23)

where φ(y) ∈ sign ζ(y), and ψ(x) ∈ sign ζ(x).

6 Duality transform
We discuss a general duality transformation related to

equation (20). Toward this end we denote the function
HΩ just by H = H(ξ), and the factor T by ρ(f). Then,
the relation betweenH and ρ is similar to the Legendre
transformation:

〈f, ξ〉 = ρ(f)H(ξ), ρ(f) = maxH(ξ)≤1〈f, ξ〉,

H(ξ) = maxρ(f)≤1〈f, ξ〉,
(24)

where the correspondence f � ξ has the form

f = ρ(f)
∂H

∂ξ
(ξ), ξ = H(ξ)

∂ρ

∂f
(f). (25)

Here, ξ and f are the points where the maximums in
(24) are attained. These relations make sense pro-
vided that H and ρ are norms, i.e., homogeneous of
degree 1 convex functions such that the sublevel sets
{H(ξ) ≤ 1} and {ρ(f) ≤ 1} are convex bodies. These
sublevels are mutually polar to each other. In other
words, if Ω = {ρ(f) ≤ 1}, and Ω◦ = {H(ξ) ≤ 1},
then Ω = {f : 〈f, ξ〉 ≤ 1, ξ ∈ Ω◦} and vice versa.
In the language of Banach spaces, the normed spaces
(V, ρ) and (V∗, H) are dual to each other. The deriva-
tives in (25) should be understood as subgradients. If
the functions H and ρ are differentiable the equation
(25) has the classical meaning. If one of the functions
H and ρ is differentiable and strictly convex, then, the
other one is also so.
The above discussion of duality is absolutely correct

in the finite dimensional setting, but is not literally cor-
rect in infinite dimension, because there is no good du-
ality theory for general Banach spaces: double dual to



a Banach space is not necessarily isomorphic to the ini-
tial one. Still, it is a good starting point for intuition.
In the cases at hand we need to calculate the dual func-

tion ρ for the function H = HΩ from (18).

Theorem 3. Consider problems (2) – (3) from the In-
troduction, corresponding to the terminal manifolds
C = R× 0, or C = R2.

1. If C = R2, then ρ(f) = 2π
∣∣∣∂f0∂x + f1

∣∣∣
∞

, where

the norm |φ|∞ of a function φ on the torus T =
R/2πZ is inf

c
sup
x∈T
|φ(x) + c|, where c ∈ R is an

arbitrary constant.
2. If C = R× 0, then ρ(f) = 2π

∣∣∣∂f0∂x + f1

∣∣∣
∞

, where

the norm |φ|∞ is the sup-norm of the function φ
on the torus T = R/2πZ.

We consider only the case (2) of Theorem 3, because
the case (3) is quite similar. Note that

|φ|∞ =
1

2
(supφ− inf φ) . (26)

We note that ∂f0∂x is an odd function, while f1 is even.
This implies that the norm ρ(f) is equivalent to (al-
though does not coincide with) max

(∣∣∣∂f0∂x ∣∣∣∞ , |f1|∞
)

.

To prove the theorem we define ρ0(f) by the for-
mula ρ0(f) =

∣∣∣∂f0∂x + f1

∣∣∣
∞

, and check that H(ξ) =

1
2π max

ρ0(f)≤1
〈f, ξ〉. Toward this end, put

ψ0(t) =

∫ t

0

ξ0(x)dx, ψ1(t) = ξ1(t), ψ = ψ0 + ψ1,

and

φ0 =
∂f0

∂x
, φ1 = f1, φ = φ0 + φ1.

Denote by
∫
T f , where T = R/2πZ, the normalized

integral 1
2π

∫ 2π

0
f(t)dt. Remind that 〈f, ξ〉 stands for∫ 2π

0
〈f(t), ξ(t)〉dt.

Then,

∫
T
φψ =

∫
T
φ0ψ0 +

∫
T
φ1ψ1 =

1

2π
〈f, ξ〉, (27)

because the integrals
∫
T φ0ψ1dt,

∫
T φ1ψ0dt vanish,

being integrals of odd functions over T = R/2πZ. It
is clear from (27), that the maximum of

∫
T φψdt, taken

over φ such that |φ|∞ ≤ 1, coincides with the maxi-
mum of 〈f, ξ〉, taken over f such that ρ0(f) ≤ 1. How-
ever, it is trivial that the maximum of

∫
T φψ =

∫
T |ψ|.

The latter value, according to (18), equals H(ξ).
One can regard our computation of the norm ρ as an a

priori estimate for solutions of the wave equation:

Theorem 4. Suppose f = (f0, f1), is a solution of the
Cauchy problem

∂f

∂t
= Af +Bu, |u| ≤ 1, f(0) = 0, (28)

where B = (0, δ), u = u(t). Then, if T ≥ 2π we have

ρ(f(T )) = 2π
∣∣∣∂f0∂x + f1

∣∣∣
∞
≤ T .

The following trivial corollary, where previous nota-
tions are retained, is quite important for us:

Corollary 1. Suppose f = (f0, f1), is a solution of
∂f
∂t = Af + Bu, |u| ≤ 1, while f̃ is control-free:
∂f
∂t = Af, and f̃(0) = f(0). Then, provided that T ≥ 2π

we have
∣∣∣(f1 − f̃1)(T )

∣∣∣
∞
≤ 1

2πT .

7 Computation of the basic control
Consider problem (2) from the Introduction, corre-

sponding to the terminal manifolds C = R×0. In order
to find the control we need to solve equations (21) as
explicitly as possible. In other words, we have to find
function ζ such that

T−1 ∂f0

∂x
(x) ∈ − sign ζ(x), T−1f1(x) ∈ sign ζ(x).(29)

Our discussion of duality, in particular the second equa-
tion (25), shows that the solution is given by

T = ρ(f) = 2π

∣∣∣∣∂f0

∂x
+ f1

∣∣∣∣
∞
, ζ =

∂ρ

∂f1
(f).

The final expression for the control is

u (f) = − sign ζ(0) = − sign f1(0), (30)

where we take into account the second equation (21)
and the vanishing at 0 of the odd part of the function
x 7→ sign ζ(x). Thus, we obtain indeed a generaliza-
tion of the dry friction, for it acts with maximal possible
amplitude against the velocity, because f1(0) is exactly
the velocity of the point, where the load is applied. The
control (30) leads to the nonlinear wave equation

∂2f

∂t2
=
∂2f

∂x2
− sign

(
∂f

∂t
(0)

)
δ (31)

governing the damping process.

8 Restatement of the model
Previous considerations stress the importance of the

function

g =
∂f0

∂x
+ f1. (32)



Knowledge of this function is almost equivalent to the
knowledge of both functions f0 and f1. Indeed, the
function ∂f0

∂x is odd and f1 is even. Therefore, knowl-
edge of these functions is equivalent to the knowledge
of the function g. On the other hand the knowledge of
∂f0
∂x gives a complete information on f0 up to an addi-

tive constant. This constant is irrelevant if the goal of
our damping process is to stop oscillation, or to stop
motion of the string at an unspecified point. The law of
the controlled motion (1), (30), (31) can be restated as
follows:(

∂

∂t
− ∂

∂x

)
g(x, t) = δ(x)u(t), |u| ≤ 1. (33)

This form of the governing law has its advantages.
In particular, it can be made rather explicit: One can
rewrite (33) as

d

dt
g(x− t, t) = δ(x− t)u(t), (34)

which means that

g(x− t, t) = g(x, 0) +
∫ t

0
δ(x− s)u(s)ds

= g(x, 0) +
∑
I u(x+ 2kπ),

(35)

where the summation is over the set I = It of k ∈ Z
such that x + 2kπ ∈ [0, t]. By the change of variables
z = x− t we come to

g(z, t) = g(z + t, 0) +
∑
J

u(z + t+ 2kπ), (36)

where the summation is over the set J = Jt of k ∈ Z
such that z + 2kπ ∈ [−t, 0]. Equation (36) should be
understood as follows: Here, g is a bounded measur-
able function of x, t and u is a bounded measurable
function of t, the curve t 7→ g(·, t) is continuous as
a map from real line to distributions depending on the
space variable x. Equation (36) does not hold point-
wise, but expresses an equality in the space of curves
of distributions of x.

9 Existence of the motion under dry-friction con-
trol

We have to obtain an existence theorem for initial
value problem for the nonlinear wave equation (31). By
using transformation (32) the task reduces to solution
of the functional equation

g(z, t) = g(z+t, 0)−
∑
J

sign g(0, z+t+2kπ), (37)

which in turn can be reduced to the search for the func-
tion g(0, t), t ≥ 0, because this defines the control low

u(t) = − sign g(0, t). This is quite nontrivial, because
the the function φ(t) = g(0, t), we are looking for,
should satisfy a functional equation. The first step in
establishing the desired functional equation is to make
equation (37) hold pointwise. It is explained in the pre-
vious section that this equation expresses an equality
in the space of curves of distributions of x. In order
to make equation (37) hold pointwise we consider the
one-sided averaging operators

Av±ε : f(z, t) 7→ 1
ε

∫ ±ε
0

f(z + x, t)dx,

Av± : f 7→ limε→0 Av±ε(f),
(38)

and more standard two-sided operator

Avε : f(z, t) 7→ 1
2ε

∫ ε
−ε f(z + x, t)dx,

Av : f 7→ limε→0 Avε(f).
(39)

Note that, according to the Lebesgue differentiation
theorem, the limit averaging operators Av± and Av are
identities when applied to any L1-function. The reason
for application of these operators is that, if operators
Av±ε are applied to the right-hand and the left-hand
sides of equation (37), the obtained equation holds
pointwise. In particular,

Avε(g)(0, t) = Avε(g)(t, 0)−∑
1
2ε

∫ ε
−ε u(z + t+ 2kπ)1[−t,0](z + t+ 2kπ)dz =

Avε(g)(t, 0)− 1
2

∑
Av−ε(u)(t+ 2kπ),

(40)
where u(t) = − sign g(0, t), summation is over the set
of k ∈ Z such that 2kπ ∈ [−t, 0], and ε < t.
To state the desired functional equation consider the

function φ(t) = Av(g)(0, t).
It follows from (40) by passing to the limit ε→ 0 that

φ(t) = G(t)− 1

2

∑
2kπ∈[−t,0]

signφ(t+ 2kπ), (41)

where G(t) = g(t, 0) is the given initial 2π-periodic
function.
Solution of this equations gives at the same time a rig-

orously defined solution to the nonlinear wave equation
(31).
Thus, we have to solve the equation

φ(t) +
1

2

∑
2kπ∈[−t,0]

signφ(t+ 2kπ) = G(t), (42)

where G is a given function, and φ is unknown. Note
that the function φ need not be periodic. It should be



defined for nonnegative t. Note also that if t < 2π, the
latter equation reduces to a very simple one:

φ(t) +
1

2
signφ(t) = G(t), (43)

which, obviously, has a unique solution, since the map
x 7→ x + signx is a strictly monotone increasing
(multivalued) function. More explicitly, the solution
φ(t) = G(t) − 1

2 if G(t) > 1
2 , and φ(t) = G(t) + 1

2
if G(t) < − 1

2 . Otherwise, φ(t) = 0. Note that
|φ(t)| ≤ |G(t)| in the considered interval [0, 2π) of
values of the argument t.
It is better rewrite the above equation (43) in the form

φ(t) +
1

2
v(t) = G(t), v(t) = signφ(t), (44)

where sign-function is regarded as multivalued:
sign(0) = [−1, 1]. Then, the a priori multivalued
signφ(t) is defined by (44) uniquely. If t < 2π we
obtain from (41) and periodicity G(t + 2π) = G(t)
that

φ(t+ 2π) +
1

2
signφ(t+ 2π) = φ(t) (45)

which allows to extend by the preceding arguments the
function φ(t) from t ∈ [0, 2π) to any positive value
of t. By the already used arguments we obtain that
|φ(t)| ≤ |G(t)| for all t ≥ 0.

Theorem 5. The Cauchy problem for the nonlinear
wave equation

(
∂

∂t
− ∂

∂x

)
g(x, t) = −δ(x) sign g(0, t), (46)

where g(x, 0) is a given bounded (Borel-measurable)
function possesses a unique bounded solution for
t ≥ 0. The functions φ(t) = g(0, t) and u(t) =
− sign g(0, t) form a unique solution of functional
equation (41).

We call the flow g = g(·, 0) 7→ Φt(g) = g(·, t), where
t ≥ 0, in the space of measurable bounded functions
the dry-friction flow.

10 Asymptotic optimality of control: polar-like
coordinate system

In this section we present at an intuitive level rea-
sons for asymptotic optimality of the control law (30).
The rigorous treatment of asymptotic optimality is per-
formed in the next Section 11. We define a polar-like
coordinate system, well suited for representation of the

motion under the control u. Every state 0 6= f of the
string can be represented uniquely as

f = ρφ, where ρ = ρ(x) is positive, and φ ∈ ∂Ω.
(47)

The pair ρ, φ is the coordinate representation for x, and
ρ(φ) = 1 is the equation of the “sphere” ω = ∂Ω. It is
important that the set ω is invariant under free (uncon-
trolled) motion of our system (5). This follows from the
similar invariance of the support function HΩ(p) under
evolution governed by ṗ = −A∗p (system (6)). The
latter invariance is clear, because the support function
is an ergodic mean of the function |ξ1(0, t)| under the
free motion. This implies invariance of the dual func-
tion ρ = ρ(f), so that 〈∂ρ/∂f, Af〉 = 0. Therefore,
under the control u from (30) the total (Lie) derivative
of ρ takes the form

ρ̇ =

〈
∂ρ

∂f
, Af +Bu

〉
=

〈
∂ρ

∂f
, Bu

〉
= −

∣∣∣∣〈∂ρ∂f , B
〉∣∣∣∣ ,

(48)
where the last identity holds because ∂ρ/∂f is the outer
normal to the set ρΩ. In particular, the “radius” ρ is a
monotone nonincreasing function of time. Moreover,
the RHS of (48) necessarily equals -1 if f1(0) 6= 0. For
any other admissible control, we have

ρ̇ ≥ −
∣∣∣∣〈∂ρ∂f , B

〉∣∣∣∣ . (49)

The evolution of φ by virtue of system (5) is described
by

φ̇ = Aφ+ 1
ρ (Bu− φρ̇) =

Aφ+ 1
ρ

(
Bu+ φ

∣∣∣〈∂ρ∂f , B〉∣∣∣) . (50)

We note that the right-hand side−
∣∣∣〈∂ρ∂f (f), B

〉∣∣∣ of (48)

equals −
∣∣∣〈∂ρ∂f (φ), B

〉∣∣∣. Thus, the evolution of the
RHS of (48) is determined by the evolution of φ by
virtue of (50). It is clear that if ρ is large, then the sec-
ond term in the RHS of (50) is O(1/ρ) and affects the
motion of φ over the “sphere” ω only slightly. Our next
task is to compute approximately the “ergodic mean”

ET =
1

T

∫ T

0

∣∣∣∣〈∂ρ∂f , B
〉∣∣∣∣ dt

of the RHS of (48) provided that ρ is large. Here, B
is a constant vector, while, according to the preceding
arguments, the vector function ∂ρ

∂f (t) := ∂ρ
∂f (f(t)) be-

haves approximately as eA
∗t ∂ρ
∂f (0). Therefore, the er-

godic mean ET is well approximated by

ET =
1

T

∫ T

0

∣∣∣〈eA∗tξ,B
〉∣∣∣ dt,



where ξ = ∂ρ
∂f (0). We know from Theorem 2 that as

T →∞ the ergodic meanET tends toH(ξ) = H(∂ρ∂f ).
But, according to one of the basic “duality relation”
(25), we know that H(∂ρ∂f ) = 1.
Therefore, we conclude, by using abbreviation ρ(t) =
ρ(∂ρ∂f (f(t))), that

(ρ(0)− ρ(T ))/T = 1 + o(1), as T →∞,

provided that we use the dry-friction control (30).
Under any other admissible control, according to The-

orem 4,

(ρ(0)− ρ(T ))/T ≤ 1 + o(1).

This expresses the asymptotic optimality we sought for.

11 Asymptotic optimality: proof
Here we prove the asymptotic optimality of the con-

trol (30) via the use of the function g(x, t) from (32).
The law of motion (36) is

g(z, t) = g(z+t, 0)−
∑
J

sign g(0, z+t+2kπ), (51)

where the set J = Jt consists of k ∈ Z such that z +
2kπ ∈ [−t, 0]. The functional ρ has the form ρ(g) =
2π supx∈R/2πZ |g(x, t)|. The control sign g(0, z + t)
is not affected by the scaling transformation

g 7→ Φ = g/ρ.

However, if ρ is large, then our previous considerations
reveal that the function Φ = g/ρ moves in al almost
uncontrollable mode. The latter means that approxi-
mately

Φ(x, t) ≈ Φ(x+ t, 0),

so that we come to the approximate equality

sign g(0, z) ≈ sign g(z, 0).

More precisely, suppose that in the time-interval [0, T ]
we have ρ(gt) ≥ 2πM, where M is a (large) constant.
In view of (41) we have

g(0, t) = g(t, 0)− 1

2

∑
2kπ∈[−t,0]

sign g(0, t+ 2kπ),

(52)
and, therefore,

|g(0, t)− g(t, 0)| ≤ t

4π
. (53)

Since ρ(g) ≥M there exist points x ∈ R/2πZ, where
either g(x, 0) ≥ M − 1 or g(x, 0) ≤ −(M − 1). As-
sume for definiteness that g(x, 0) ≥ M − 1. Then, in
view of (53), sign g(0, t + 2kπ) = +1 for t ∈ [0, T ]
provided that T

4π ≤ M − 1. For instance, this is the
case if M is large and T = O(

√
M).

In view of (51) this means that

g(z − t, t) = g(z, 0)− t

2π
sign g(z, 0) +O(1), (54)

where |O(1)| ≤ 1, and g(z, 0) ≥ M − 1. This implies
that

sup
z
g(z, t) = sup

z
g(z, 0)− t

2π
+O(1), (55)

since sign g(z, 0) = +1 if g(z, 0) ≥ M − 1. Since
ρ(t) = 2π supz g(z, t) we obtain the approximate
equality

(ρ(0)− ρ(t))/t = 1 +O(1/t), (56)

provided that the length T of the time interval is less
than 4π(M − 1).
By partition of any sufficiently long interval of

time [0, T ] into many equal intervals of length ≤
4π(M − 1) we come to the following:

Theorem 6. Consider evolution ρ(t) = ρ(gt) of ρ un-
der control (51). Let

M = min{ρ(0), ρ(T )}. (57)

Suppose that M → +∞, T → +∞. Then, we have

(ρ(0)− ρ(T ))/T = 1 +O(1/T + 1/M). (58)

Under any other admissible control,

(ρ(0)− ρ(T ))/T ≤ 1 +O(1/T + 1/M). (59)

The preceding arguments prove statement (58), state-
ment (59) follows from Theorem 4.

12 Attractors of the dry-friction flow
Methods used in Section 9 allows to reveal the ba-

sic properties of the dry-friction flow. In particu-
lar, it is possible to derive the asymptotic optimality
of the dry-friction flow directly from equations (43)–
(45). Indeed, it follows from equations (43), (44)
that if supx g(x, 0) > 1/2, then supt∈[0,2π] φ(t) =
supx g(x, 0)− 1/2. From equation (45) it follows that



13 Singular arcs
These are by definition the time-intervals, where in the

controlled motion

(
∂

∂t
− ∂

∂x

)
g(x, t) = δ(x)u(t), u = − sign g(0, t)

(60)
the control is not uniquely defined, i.e. g(0, t) ≡ 0.
To construct a motion of this kind we use the spectral
decompositions g(x, t) =

∑
gµ(x)eiµt, and u(t) =∑

uµe
iµt. This almost periodic function should be

bounded: |u| ≤ 1 Then, the functions gµ should sat-
isfy

iµgµ −
∂

∂x
gµ = −δuµ, and gµ(0) = 0. (61)

The first equation (61) guarantees that 0 is the point of
discontinuity of gµ, so that the second equation (61)
should be treated cautiously. In fact, the discussion
of Section 9 shows that we have to take 1

2 (gµ(0+) +
gµ(0−)) for gµ(0). Indeed, according to the first equa-
tion (61), the function gµ is piecewise differentiable
with jumps at x = 0. Therefore, 2π-periodic function
gµ should have the form

gµ(x) = Cµe
iµx for x ∈ [0, 2π), (62)

where the constant Cµ = (1− e2πiµ)−1uµ. The condi-
tion gµ(0) = 0 gives

1 + e2πiµ = 0,

which implies that µ should have the form µ = 1
2ν,

where ν is an odd integer, and Cµ = uµ/2. Therefore,
the control u(t) =

∑
uµe

iµt is not just almost periodic
but 4π-periodic. Moreover,

g(x, t) =
∑
gµ(x)eiµt = 1

2

∑
uµe

iµ(t+x)

= 1
2u(t+ x) for x ∈ [0, 2π).
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