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Abstract— We consider the simplest model for con-
trolling the rotation of a molecule by the action of an
electric field, namely a quantum planar pendulum.

This problem consists in characterizing the control-
lability of a PDE (the Schrodinger equation) on a
manifold with nontrivial topology (the circle S'). The
drift has discrete spectrum and its eigenfunctions are
trigonometric functions.

Some controllability results for the Schrodinger equa-
tion can be applied in this context. We tackle the
problem by adapting the general method proposed by
some of the authors in a recent paper. This requires, in
particular, proving, by perturbation arguments, the non-
resonance of the spectrum of the differential operator
corresponding to a small constant control. The spectrum
of this operator is given by the Mathieu characteristic
values and its eigenfunctions are the Mathieu sinus and
cosinus.

Our main result says that we have simultaneous
approximate controllability separately for the even and
odd components of the wave function.

I. PHYSICAL MOTIVATIONS AND MAIN RESULTS

of the eigenstates. The controllability is proved for
arbitrarily small controls which could be interesting
for practical applications. In particular, this means
that there exist control strategies which bring the
initial state arbitrarily close to states maximizing the
molecular orientation [8].

A. The model

We consider a polar linear molecule in its ground
vibronic state subject to a nonresonant (with respect
to vibronic frequencies) linearly polarized laser field.
Within the rigid rotor approximation, the controlled
dynamics is governed by the Schrodinger equation on
the spheres? which can be written in units such that
h=1 as:

0Y(0, ¢,1)

ot

where B is the rotational constant,y the permanent
dipole momentA the Laplacian on the sphere (called

= (=BA = po E(t) cos 0)4(0, ¢, 1) (1)

Molecular orientation and alignment are well-in this context the angular momentum operatdt),

established topics in the quantum control of moleculahe polar angle between the polarization direction and
dynamics both from the experimental and theoreticdhe molecular axis ane the azimuthal angle. The
points of view (See [7], [5] and references therein)control is given by the electric fields. We neglect
For linear molecules driven by linearly polarizedin this model the polarizability tensor term which
laser fields in gas phase, alignment means an igorresponds to the field-induced dipole moment. This
creased probability direction along the polarizatiorpproximation is correct if the intensity of the laser
axis whereas orientation requires in addition the sanféeld is sufficiently weak. Despite its simplicity, this
(or opposite) direction as the polarization vector. Suckquation reproduces very well the experimental data
controls have a variety of applications extending fron®n the rotational dynamics of rigid molecules [7].
chemical reaction dynamics to surface processing, As a first step in the study of the controllability
catalysis and nanoscale design. A large amount &f rotating molecules, we consider a simple control
numerical simulations have been done in this domaiproblem of a linear molecule moving in a plane.
[5] but the mathematical part remains to explore. FronThis problem can be viewed as the control of the
this perspective, the controllability problem is the firstSchrodinger equation on a circle. The dynamics is
guestion to solve. ruled by the equation:

In other respect, the rotational molecular dynamics P 2
: . 0Y(0,1) 0
is one of the most important examples of quantum i——— = (——2 + u(t) cos(G)) (0, t) 2
systems with an infinite-dimensional Hilbert space and ot 09
a discrete spectrum. It appears therefore as a natumhich is written in normalized coordinates. The angle
model to study the controllability and to extend thed can be interpreted as the angle between the polar-
results of [3]. ization direction and the molecular axis. The control

We focus in this paper on the control by laser fielddield is now given by the functiom. Note that such
of the rotation of a rigid linear molecule confineda system has already been used to understand the
to a plane. This control problem corresponds to theynamics of molecular orientation or alignment (see,
control of the Schrodinger equation on a circle. Wee.g., [6]). This simple model allows to solve ana-
show the approximate controllability of this systemlytically the question of approximate controllability,
up to a trivial symmetry corresponding to the paritywhich explains its choice in this paper.



B. The main results

In the following we denote byy(T; g, u) the
solution at timeT' of equation (2), corresponding to
controlw and with initial conditiory(0; v, u) = o,
belonging to the Hilbert sphei of H = L?(S!,C).

Let us splitH as H. & H,, whereH. (resp.H,)
is the subspace of{ of even (resp. odd) functions.

B. Approximate controllability

It is known that, in general, exact controllability
is hopeless for skew-adjoint discrete-spectrum control
systems whert is an infinite dimensional.? space
(see [1], [9]). Nevertheless, one may sometimes get
controllability in a weaker sense.

Definition 2: Let (A,B,U) be a skew-adjoint

Here the parity of the function is meant with respectliscrete-spectrum control system. We say that

to the origing = 0. Notice thatH, and’, are Hilbert
spaces. Let us also denate= (¢, ,), wherey, €
H. andp, € H,.

(A,B,U) is approximately controllable if for every
9, 9! belonging to the Hilbert unit spher§ and
everye > 0 there exists an admissible control function

Our first result is that the system is not controllable, € L°°([0, 7], U) such that|)* — (T 9% u)|| < e.
since the norms of the even and odd parts of the wave Let, for everyn € N, i), denote the eigenvalue

function are conserved.

Proposition 1: For everyu € L°([0,7T],R) we
have [|4,(t)][ [46(0)lI2 and [¢pe ()%
196 (0) |-

of A corresponding tog, (A, € R). The main
result of this paper is based on the following abstract
controllability result (see [3]).

Theorem 2:Let § > 0 and (4, B,(0,6)) be a

Our main result says that we have simultaneous agkew-adjoint discrete-spectrum control system. If the

proximate controllability separately for the even anctlements of the sequende.,

odd components.

Theorem 1:For every ¢° (2, 49), Pt =
(v, 4!) belonging to the Hilbert sphere &f(S*, C)
with [[92]lx = [lvelln and [[vgll = [[¥5]» and
every ¢,0 > 0, there existT > 0 and u €
L*([0,T],(0,4]) such thatl|)* — (T; 4% u)|| < e.

Il. MATHEMATICAL FRAMEWORK
A. Notations and definition of solutions

Hereafter N denotes the set of strictly positive
integers andNj N U {0} denotes the set of

— A)nen are Q-
linearly independent and B¢, ¢,t1) # 0 for
everyn € N, then (A, B, (0,9)) is approximately
controllable.

Recall that the elements of the sequerigg;; —
An)nen are said to beQ-linearly independent if for
every N € N and(qi,...,qy) € QN ~ {0} one has

Zﬁ[:l qn(An+1 - An) 7é 0.

IIl. ENERGY LEVELS THAT ARE COUPLED BY THE

EXTERNAL FIELD

Let H = L?(S*, C). In the following A denotes the

positive integers. Definition 1 below provides theoperator
abstract mathematical framework that will be used to

formulate the controllability results later applied to the

Schrodinger equation (2).

Definition 1: Let’H be a complex Hilbert space and
U be a subset oR. Let A, B be two operators ofi{
with values inH. The control systeniA, B,U) is the
formal controlled equation

dip

dt
We say that(A, B,U) is a skew-adjoint discrete-

(t) = AY(t) + u(®)BY(t),  u(t) eU. (3)

spectrum control system if the following conditions

are satisfied: (H1)A and B are skew-adjointB is

a bounded operator, whild is possibly unbounded
with domainD(A); (H2) there exists an orthonormal
basis(¢,)nen of H made of eigenvectors of.

H%(S*,C)
¥

and B : ‘H — H the multiplication operator by
—icos®.

We study in this section which eigenstates of the
operatorA are coupled by the external field. To this
purpose we compute

— H

Azz'agz

b= [ cost®)0; (0)0n(60)00.

where (¢;);en, denotes an orthonormal basis of

eigenfunctions ofAd. The infinite matrix (b;); ke,
represents the operatiB in the basis(¢,) en,. TWo
eigenstates areoupledif b;;, # 0.

Under the assumption (H1) well-known results assert A possible choice of the basi&p;);cy, is the

that if w € L'([0,T],U) then there exists a unique
weak (and mild) solutionp(; 9%, u) € C([0,T],H)
of (3) satisfyingw(0; 9%, u) = ¢°.

Moreover, ifyyy € D(A) andu € C*([0,T],U) then
¥ (t; o, u) is differentiable and it is a strong solution
of (3). (See [1] and references therein.)

following:
\/% if m=0,
dm (0) = Mﬂem if m > 0 even, (4)

sin((m—+1)6/2)

if m odd.



Therefore, a simple computation yields 20;

75 it {5k} ={0,2}, |

bjr=1< 3 if |j—kl=2andj,k >0,
0  otherwise.

The infinite matrix (b;x ), xen, has the following
structure

1

0 0 % 0
0o 0 0 3 0
1 1
vz 0000 Sf
0o 5 0 0 0 5 O

. : 1ol

Let H. andH, be the (closed) Hilbert subspaces}of Fig. 1. Mathieu characteristic values

generated by{¢,,(:) | m evert and{¢,,(:) | m odd}
respectively. Notice that{. is made of all functions

in 7 that are even with respect €= 0, while 7, is  The relation between the functions, and the Math-

made of odd functions. _ ieu functions is explained below.
It follows from the computation above thaf. and

H, are both invariant subspaces of each operator A. The Mathieu equation
A, = A+ uB. Fix_a,g € R and let us consider the Mathieu
equation:
Is—iyesr:;:(reﬁ (tzh)(.ey are integral manifolds of the control (=02 + 2g cos(22))y = ay. (6)
System (2) splits in two decoupled skew-adjointSolutions to this equation are the so called Math-
discrete-spectrum control systems sharing the san@y cosinus and Mathieu sinus and are denoted
controlu. Proposition 1 follows. by C(a,q,2) and S(a,q,z). For certain values of
In the following sections we show how Theorem 2, called characteristic values, Mathieu cosinus and
can be used to prove the approximate controllabilitjathieu sinus are@x periodic functions. More pre-
in ‘H. and H,. We will then discuss how to control cisely for everyg there exist two increasing sequences
independently in the two spaces with the same=  (a;(q))ren, and(bx(q))ren such thalC(a, g, 2) is 27
u(t). periodic if and only ifa = ax(q) for somek and
S(a,q, z) is 2w periodic if and only ifa = b (q) for

IV. CONTROLLABILITY IN H. AND H, . . .
) ) T T somek. The graphs of the first Mathieu characteristic
Since the eigenvalues of the operatd); onH are  \qjyes is plotted in Figure 1.

{m?}en,, then Theorem 2 does not apply neither on

H nor onH, or Ho. Notice that fork € Ny, ax(0) = b, (0) = k% and
The 2|dea is then to apply Theorem 2 fe, = forq>0, ki # ks, the valuesuy, (q) and by, (q) are

—i(—0z +ncos(f)) and B,y = B and foru belonging 4 pairwise distinct andu; (g) > b (q).

to the control set0, § — 7). Periodic cosinus and sinus of Mathieu are usually

This corresponds to a reparameterization of thganeted bycer (2, ¢) and sey,(z, q). Notice that
control set that sends into a new controlu — 7.

The eigenvalues of4, can be expressed in termsC(a,0,2) = cos(vaz), S(a,0,2) = sin(vaz). (7)
of Mathieu characteristic values and their asymptoti
analysis can be used to prove the existence of so
value of n for which the spectrum of4, is non-

resonant. . 2 S N
admits a nontrivial solution if and only i coincides
1 = - 2 . . .
_ Forevery) € R, the operatofd, = —8+1cos(f) i one characteristic value.
is self-adjoint and has discrete spectrum. We will de-

note by(\..(n))men, the non-decreasing sequence of
its eigenvalues counted according to their multiplicity
and by (¢, (-,n))men, @ sequence of corresponding (—92 + 41 cos(22))m (22,1) = 4An (1) (22,7).
eigenfunctions. Therefore

An important point, that will be used later, is that;
hd sey, arem-periodic if and only ifk is even.
When the equation (6) is formulated afi!, it

If in equation (5) we sefl = 2z, we get the equation

Since § is 2r-periodic, z is w-periodic. Hencez —
(=07 +1cos8(0)Pm (0,1) = An(M)dm(0,1).  (5)  ém(22,m) is a w-periodic solution of the Mathieu
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Fig. 4. Graph of¢100(6, 1500)

large, the following expansion of; in Laurent series

holds true
Fig. 2. Graph of\,,(n) form =0,1,2,3,4,5,6, 7. o k—2
v =3 r6) () ®
1.5F k=0 \/ﬁ
or MMM(\MM where eachP; is a real polynomial of degrek. See
osp [4].

Y ‘ ‘ ‘_ R The expansion (8) is relevant to our arguments even
~osF if the control set(0, ¢] is small. This is because of the
1ok analytic dependence an
-151

C. Non-resonance of the perturbed spectrum

Fig. 3. Graph ofg30(6, 1500) We prove in this section that the spectrumAyf is
nonresonant for, in a subset of full measure @+.
Lemjn\?a l:Let N € N, 2z1,...,2y € Z and assume
equation (6) witha = 4\, () andgq = 21. It follows &t Xy ZmAm (1) = 0 for everyn. Thenz =
that the spectrum of4,, is given by =2y =0. _ .
Proof: Taking the firstV terms of the expan-
@ if m even sion of the resonance reIatioEf:i:1 ZmAm(n) = 0
A () = but1Z) gy odd according to (8), we get

Moreover, Nl N i N
cem (6/2,2n) Z { (Z Zmpk(m)> TIT = O(T] 2 )

. [ Gk v if m even, k=0 m=1
dm(0,n) = sem41(0/2,21)
llsem+1(-/2.2n)[lL2(s1)

Notice thatp,, (0,0) = ¢, (0) whereg,, was defined N ,

in (4) szPj(m):O, j=0,....,N—1. 9)
The graphs of the first eigenvalues is plotted in ™!

Figure 2 \_/vhile the graph of two eigenfunctions isg;, 7, € {0,...,N — 1} and define

plotted in figures 3 and 4.

if m odd. Hence,

1. _
Pla) = —TEb (e — m)TY (@ — m).

Notice that P is a polynomial of degre&V — 1 and
B. Asymptotic development of Mathieu characteristitherefore it can be written as linear combination of

functions fory large Py, ..., Py_1 (recall thatdeg(Py) = k).
Let us recall some facts on the dependenck;6f) Letco,...,en—1 € R be such that
and¢;(6,n) onn. N—1
It is well known that they are analytic with respect P cr Py

to . Moreover for everyj € N, for n sufficiently =0



Then

k
= 0

where the last equality follows from (9). [ |
From Lemma (1) and the analyticity of,,(n) with
respect ton it follows that, given a finite nonzero
sequence of rational coefficiens, ..., ¢y, the rela-
tion Zﬁle gmAm (1) = 0 holds for at most countably

Fix n such that the spectrum ofd7; + 7 cos(f)
is non-resonant and eacA!™, B is connected.
We define A, . and B, . (respA,, and B, ,) on
a subdomain ofH. (respH,) as the restrictions of
A, and B, to H. (respH,). The two skew-adjoint
discrete-spectrum control systerqd, ., B, ., [0, 9))
and (A, ., By.o, [0, 6)) satisfy the hypotheses of The-
orem 3. Theorem 2 follows.

VI. CONCLUSION

In this paper we consider the problem of controlling
the orientation of a planar molecule by the action
of a constant (in space) external field. We charac-
terize completely the controllability properties of this
system. Namely we proved that the system is not
approximately controllable since the state space is the
direct sum of two nontrivial integral manifolds (the
spaces of even and odd wave functions). In a sense,

many n € R. Since the set of possible choices ofthis happens to be the only obstacle to controllability,

N,q,...,qn is countable, then the spetrum df, is
nonresonant except for countably mamny
D. Connectedness for the operatBron H, and H,

In order to apply Theorem 2 to (2) dH. andH,
we are left to prove that for some for which the
spectrum of4,, is nonresonant,

<B¢m('777)a ¢m+2('a 77)> 7é 0

for everym € Ny. This is a consequence of the

analytic dependence @f,,(-,7) onn and the fact that
<B¢m('v O)a ¢m+2('a O)> 7£ O,

as proved in Section lll. We have proved the approx®!
imate controllability among wave functions with the

same parity.

V. SIMULTANEOUS CONTROL

To conclude the proof of Theorem 2, we need an
argument of simultaneous independent controlability€!
The following result is a slight adaptation of [3,

Theorem 2.4] (see also [2]).

Theorem 3:Let H; and Hs be two Hilbert spaces
with respective Hilbert basegp!);en and (42);en.
Let (A;, B1,[0,6)) and (A, B2, [0,4)) be two skew-
adjoint discrete-spectrum control systems fdn and
H, respectively such thatd; is diagonal in the
basis (¢§)jeN for ¢+ = 1,2. If the concatenation
of the spectra ofA; and A, is a Q-linearly in-
dependent family and if for every in N, ¢ =
1,2, (B}, ¢hiy)
(A1, B1,[0,6)) and (As, Bs,[0,d)) are simultane-

# 0, then the two systems

since the even and the odd part of the wave function
can be controlled simultaneously, keeping constant
their relative norm.
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ously approximately controllable, that is, for every

(vg,5) and (¢1,47) in Hy x Ha such that|yg|| =
il i = 1,2, for everyd,e > 0, there exists an
admissible control: € L*>°([0,T7, [0, d)) steering the
system(A;, B;,[0,6)) from «} to ane-neighborhood
of i, i=1,2.



