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Abstract— We consider the simplest model for con-
trolling the rotation of a molecule by the action of an
electric field, namely a quantum planar pendulum.

This problem consists in characterizing the control-
lability of a PDE (the Schrödinger equation) on a
manifold with nontrivial topology (the circle S

1). The
drift has discrete spectrum and its eigenfunctions are
trigonometric functions.

Some controllability results for the Schrödinger equa-
tion can be applied in this context. We tackle the
problem by adapting the general method proposed by
some of the authors in a recent paper. This requires, in
particular, proving, by perturbation arguments, the non-
resonance of the spectrum of the differential operator
corresponding to a small constant control. The spectrum
of this operator is given by the Mathieu characteristic
values and its eigenfunctions are the Mathieu sinus and
cosinus.

Our main result says that we have simultaneous
approximate controllability separately for the even and
odd components of the wave function.

I. PHYSICAL MOTIVATIONS AND MAIN RESULTS

Molecular orientation and alignment are well-
established topics in the quantum control of molecular
dynamics both from the experimental and theoretical
points of view (See [7], [5] and references therein).
For linear molecules driven by linearly polarized
laser fields in gas phase, alignment means an in-
creased probability direction along the polarization
axis whereas orientation requires in addition the same
(or opposite) direction as the polarization vector. Such
controls have a variety of applications extending from
chemical reaction dynamics to surface processing,
catalysis and nanoscale design. A large amount of
numerical simulations have been done in this domain
[5] but the mathematical part remains to explore. From
this perspective, the controllability problem is the first
question to solve.

In other respect, the rotational molecular dynamics
is one of the most important examples of quantum
systems with an infinite-dimensional Hilbert space and
a discrete spectrum. It appears therefore as a natural
model to study the controllability and to extend the
results of [3].

We focus in this paper on the control by laser fields
of the rotation of a rigid linear molecule confined
to a plane. This control problem corresponds to the
control of the Schrödinger equation on a circle. We
show the approximate controllability of this system
up to a trivial symmetry corresponding to the parity

of the eigenstates. The controllability is proved for
arbitrarily small controls which could be interesting
for practical applications. In particular, this means
that there exist control strategies which bring the
initial state arbitrarily close to states maximizing the
molecular orientation [8].

A. The model

We consider a polar linear molecule in its ground
vibronic state subject to a nonresonant (with respect
to vibronic frequencies) linearly polarized laser field.
Within the rigid rotor approximation, the controlled
dynamics is governed by the Schrödinger equation on
the sphereS2 which can be written in units such that
~ = 1 as:

i
∂ψ(θ, φ, t)

∂t
= (−B∆ − µ0E(t) cos θ)ψ(θ, φ, t) (1)

whereB is the rotational constant,µ0 the permanent
dipole moment,∆ the Laplacian on the sphere (called
in this context the angular momentum operator),θ

the polar angle between the polarization direction and
the molecular axis andφ the azimuthal angle. The
control is given by the electric fieldE. We neglect
in this model the polarizability tensor term which
corresponds to the field-induced dipole moment. This
approximation is correct if the intensity of the laser
field is sufficiently weak. Despite its simplicity, this
equation reproduces very well the experimental data
on the rotational dynamics of rigid molecules [7].

As a first step in the study of the controllability
of rotating molecules, we consider a simple control
problem of a linear molecule moving in a plane.
This problem can be viewed as the control of the
Schrödinger equation on a circle. The dynamics is
ruled by the equation:

i
∂ψ(θ, t)

∂t
=

(

− ∂2

∂θ2
+ u(t) cos(θ)

)

ψ(θ, t) (2)

which is written in normalized coordinates. The angle
θ can be interpreted as the angle between the polar-
ization direction and the molecular axis. The control
field is now given by the functionu. Note that such
a system has already been used to understand the
dynamics of molecular orientation or alignment (see,
e.g., [6]). This simple model allows to solve ana-
lytically the question of approximate controllability,
which explains its choice in this paper.



B. The main results

In the following we denote byψ(T ;ψ0, u) the
solution at timeT of equation (2), corresponding to
controlu and with initial conditionψ(0;ψ0, u) = ψ0,
belonging to the Hilbert sphereS of H = L2(S1,C).

Let us splitH asHe ⊕ Ho, whereHe (resp.Ho)
is the subspace ofH of even (resp. odd) functions.
Here the parity of the function is meant with respect
to the originθ = 0. Notice thatHe andHo are Hilbert
spaces. Let us also denoteψ = (ψe, ψo), whereψe ∈
He andψo ∈ Ho.

Our first result is that the system is not controllable
since the norms of the even and odd parts of the wave
function are conserved.

Proposition 1: For every u ∈ L∞([0, T ],R) we
have ‖ψo(t)‖H = ‖ψo(0)‖H and ‖ψe(t)‖H =
‖ψe(0)‖H.
Our main result says that we have simultaneous ap-
proximate controllability separately for the even and
odd components.

Theorem 1:For every ψ0 = (ψ0
e , ψ

0
o), ψ1 =

(ψ1
e , ψ

1
o) belonging to the Hilbert sphere ofL2(S1,C)

with ‖ψ0
e‖H = ‖ψ1

e‖H and ‖ψ0
o‖H = ‖ψ1

o‖H and
every ε, δ > 0, there exist T > 0 and u ∈
L∞([0, T ], (0, δ]) such that‖ψ1 − ψ(T ;ψ0, u)‖ < ε.

II. M ATHEMATICAL FRAMEWORK

A. Notations and definition of solutions

Hereafter N denotes the set of strictly positive
integers andN0 = N ∪ {0} denotes the set of
positive integers. Definition 1 below provides the
abstract mathematical framework that will be used to
formulate the controllability results later applied to the
Schrödinger equation (2).

Definition 1: LetH be a complex Hilbert space and
U be a subset ofR. Let A,B be two operators onH
with values inH. The control system(A,B,U) is the
formal controlled equation

dψ

dt
(t) = Aψ(t) + u(t)Bψ(t), u(t) ∈ U. (3)

We say that(A,B,U) is a skew-adjoint discrete-
spectrum control system if the following conditions
are satisfied: (H1)A andB are skew-adjoint.B is
a bounded operator, whileA is possibly unbounded
with domainD(A); (H2) there exists an orthonormal
basis(φn)n∈N of H made of eigenvectors ofA.
Under the assumption (H1) well-known results assert
that if u ∈ L1([0, T ], U) then there exists a unique
weak (and mild) solutionψ(·;ψ0, u) ∈ C([0, T ],H)
of (3) satisfyingψ(0;ψ0, u) = ψ0.

Moreover, ifψ0 ∈ D(A) andu ∈ C1([0, T ], U) then
ψ(t;ψ0, u) is differentiable and it is a strong solution
of (3). (See [1] and references therein.)

B. Approximate controllability

It is known that, in general, exact controllability
is hopeless for skew-adjoint discrete-spectrum control
systems whenH is an infinite dimensionalL2 space
(see [1], [9]). Nevertheless, one may sometimes get
controllability in a weaker sense.

Definition 2: Let (A,B,U) be a skew-adjoint
discrete-spectrum control system. We say that
(A,B,U) is approximately controllable if for every
ψ0, ψ1 belonging to the Hilbert unit sphereS and
everyε > 0 there exists an admissible control function
u ∈ L∞([0, T ], U) such that‖ψ1 −ψ(T ;ψ0, u)‖ < ε.

Let, for everyn ∈ N, iλn denote the eigenvalue
of A corresponding toφn (λn ∈ R). The main
result of this paper is based on the following abstract
controllability result (see [3]).

Theorem 2:Let δ > 0 and (A,B, (0, δ)) be a
skew-adjoint discrete-spectrum control system. If the
elements of the sequence(λn+1 − λn)n∈N are Q-
linearly independent and if〈Bφn, φn+1〉 6= 0 for
every n ∈ N, then (A,B, (0, δ)) is approximately
controllable.

Recall that the elements of the sequence(λn+1 −
λn)n∈N are said to beQ-linearly independent if for
everyN ∈ N and (q1, . . . , qN ) ∈ QN r {0} one has
∑N

n=1 qn(λn+1 − λn) 6= 0.

III. E NERGY LEVELS THAT ARE COUPLED BY THE

EXTERNAL FIELD

Let H = L2(S1,C). In the followingA denotes the
operator

A = i∂2
θ : H2(S1,C) → H

ψ 7→ i∂2
θψ

and B : H → H the multiplication operator by
−i cos θ.

We study in this section which eigenstates of the
operatorA are coupled by the external field. To this
purpose we compute

bjk =

ˆ

S1

cos(θ)φj(θ)φk(θ)dθ,

where (φj)j∈N0 denotes an orthonormal basis of
eigenfunctions ofA. The infinite matrix(bjk)j,k∈N0

represents the operatoriB in the basis(φj)j∈N0 . Two
eigenstates arecoupledif bjk 6= 0.

A possible choice of the basis(φj)j∈N0 is the
following:

φm(θ) =















1√
2π

if m = 0,

cos(mθ/2)√
π

if m > 0 even,

sin((m+1)θ/2)√
π

if m odd.

(4)



Therefore, a simple computation yields

bjk =















1√
2

if {j, k} = {0, 2},
1
2 if |j − k| = 2 andj, k > 0,

0 otherwise.

The infinite matrix (bjk)j,k∈N0 has the following
structure














0 0 1√
2

0 · · ·
0 0 0 1

2 0 · · ·
1√
2

0 0 0 1
2 0 · · ·

0 1
2 0 0 0 1

2 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .















.

Let He andHo be the (closed) Hilbert subspaces ofH
generated by{φm(·) | m even} and{φm(·) | m odd}
respectively. Notice thatHe is made of all functions
in H that are even with respect toθ = 0, while Ho is
made of odd functions.

It follows from the computation above thatHe and
Ho are both invariant subspaces of each operator

Au = A+ uB.

Hence, they are integral manifolds of the control
system (2).

System (2) splits in two decoupled skew-adjoint
discrete-spectrum control systems sharing the same
controlu. Proposition 1 follows.

In the following sections we show how Theorem 2
can be used to prove the approximate controllability
in He andHo. We will then discuss how to control
independently in the two spaces with the sameu =
u(t).

IV. CONTROLLABILITY IN He AND Ho

Since the eigenvalues of the operator−∂2
θ onH are

{m2}m∈N0, then Theorem 2 does not apply neither on
H nor onHe or Ho.

The idea is then to apply Theorem 2 forAη =
−i(−∂2

θ + η cos(θ)) andBη = B and foru belonging
to the control set(0, δ − η].

This corresponds to a reparameterization of the
control set that sendsu into a new controlu − η.
The eigenvalues ofAη can be expressed in terms
of Mathieu characteristic values and their asymptotic
analysis can be used to prove the existence of some
value of η for which the spectrum ofAη is non-
resonant.

For everyη ∈ R, the operatoriAη = −∂2
θ +η cos(θ)

is self-adjoint and has discrete spectrum. We will de-
note by(λm(η))m∈N0 the non-decreasing sequence of
its eigenvalues counted according to their multiplicity
and by (φm(·, η))m∈N0 a sequence of corresponding
eigenfunctions. Therefore

(−∂2
θ + η cos(θ))φm(θ, η) = λm(η)φm(θ, η). (5)
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Fig. 1. Mathieu characteristic values

The relation between the functionsφm and the Math-
ieu functions is explained below.

A. The Mathieu equation

Fix a, q ∈ R and let us consider the Mathieu
equation:

(−∂2
z + 2q cos(2z))y = ay. (6)

Solutions to this equation are the so called Math-
ieu cosinus and Mathieu sinus and are denoted
by C(a, q, z) and S(a, q, z). For certain values of
a, called characteristic values, Mathieu cosinus and
Mathieu sinus are2π periodic functions. More pre-
cisely for everyq there exist two increasing sequences
(ak(q))k∈N0 and(bk(q))k∈N such thatC(a, q, z) is 2π
periodic if and only if a = ak(q) for somek and
S(a, q, z) is 2π periodic if and only ifa = bk(q) for
somek. The graphs of the first Mathieu characteristic
values is plotted in Figure 1.

Notice that fork ∈ N0, ak(0) = bk(0) = k2 and
for q > 0, k1 6= k2, the valuesak1(q) and bk2(q) are
all pairwise distinct andak(q) > bk(q).

Periodic cosinus and sinus of Mathieu are usually
denoted bycek(z, q) andsek(z, q). Notice that

C(a, 0, z) = cos(
√
ax), S(a, 0, z) = sin(

√
ax). (7)

An important point, that will be used later, is thatcek

andsek areπ-periodic if and only ifk is even.
When the equation (6) is formulated onS1, it

admits a nontrivial solution if and only ifa coincides
with one characteristic value.

If in equation (5) we setθ = 2z, we get the equation

(−∂2
z + 4η cos(2z))φm(2z, η) = 4λm(η)φm(2z, η).

Since θ is 2π-periodic, z is π-periodic. Hencez 7→
φm(2z, η) is a π-periodic solution of the Mathieu
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Fig. 2. Graph ofλm(η) for m = 0, 1, 2, 3, 4, 5, 6, 7.
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Fig. 3. Graph ofφ30(θ, 1500)

equation (6) witha = 4λm(η) andq = 2η. It follows
that the spectrum ofiAη is given by

λm(η) =

{

am(2η)
4 if m even,

bm+1(2η)
4 if m odd.

Moreover,

φm(θ, η) =







cem(θ/2,2η)
‖cem(·/2,2η)‖

L2(S1)
if m even,

sem+1(θ/2,2η)
‖sem+1(·/2,2η)‖

L2(S1)
if m odd.

Notice thatφm(θ, 0) = φm(θ) whereφm was defined
in (4)

The graphs of the first eigenvalues is plotted in
Figure 2. while the graph of two eigenfunctions is
plotted in figures 3 and 4.

B. Asymptotic development of Mathieu characteristic
functions forη large

Let us recall some facts on the dependence ofλj(η)
andφj(θ, η) on η.

It is well known that they are analytic with respect
to η. Moreover for everyj ∈ N, for η sufficiently
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Fig. 4. Graph ofφ100(θ, 1500)

large, the following expansion ofλj in Laurent series
holds true

λj(η) =

∞
∑

k=0

Pk(j)

(

1√
η

)k−2

, (8)

where eachPk is a real polynomial of degreek. See
[4].

The expansion (8) is relevant to our arguments even
if the control set(0, δ] is small. This is because of the
analytic dependence onη.

C. Non-resonance of the perturbed spectrum

We prove in this section that the spectrum ofAη is
nonresonant forη in a subset of full measure ofR+.

Lemma 1:Let N ∈ N, z1, . . . , zN ∈ Z and assume
that

∑N
m=1 zmλm(η) = 0 for every η. Then z1 =

· · · = zN = 0.
Proof: Taking the firstN terms of the expan-

sion of the resonance relation
∑N

m=1 zmλm(η) = 0
according to (8), we get

N−1
∑

k=0

{(

N
∑

m=1

zmPk(m)

)

η
2−k

2

}

= O(η
4−N

2 ).

Hence,

N
∑

m=1

zmPj(m) = 0, j = 0, . . . , N − 1. (9)

Fix m̄ ∈ {0, . . . , N − 1} and define

P̄ (x) =
1

m̄
Πm̄−1

m=0(x−m)ΠN−1
m̄+1(x −m).

Notice thatP̄ is a polynomial of degreeN − 1 and
therefore it can be written as linear combination of
P0, . . . , PN−1 (recall thatdeg(Pk) = k).

Let c0, . . . , cN−1 ∈ R be such that

P̄ =

N−1
∑

k=0

ckPk.



Then

z̄ =

N
∑

m=1

zmP̄ (m)

=

N
∑

m=1

zm

N−1
∑

k=0

ckPk(m)

=

N−1
∑

k=0

ck

N
∑

m=1

zmPk(m)

= 0

where the last equality follows from (9).
From Lemma (1) and the analyticity ofλm(η) with

respect toη it follows that, given a finite nonzero
sequence of rational coefficientsq1, . . . , qN , the rela-
tion

∑N
m=1 qmλm(η) = 0 holds for at most countably

many η ∈ R. Since the set of possible choices of
N, q1, . . . , qN is countable, then the spetrum ofAη is
nonresonant except for countably manyη.

D. Connectedness for the operatorB on He andHo

In order to apply Theorem 2 to (2) onHe andHo

we are left to prove that for someη for which the
spectrum ofAη is nonresonant,

〈Bφm(·, η), φm+2(·, η)〉 6= 0

for every m ∈ N0. This is a consequence of the
analytic dependence ofφm(·, η) on η and the fact that

〈Bφm(·, 0), φm+2(·, 0)〉 6= 0,

as proved in Section III. We have proved the approx-
imate controllability among wave functions with the
same parity.

V. SIMULTANEOUS CONTROL

To conclude the proof of Theorem 2, we need an
argument of simultaneous independent controlability.
The following result is a slight adaptation of [3,
Theorem 2.4] (see also [2]).

Theorem 3:Let H1 andH2 be two Hilbert spaces
with respective Hilbert bases(φ1

j )j∈N and (φ2
j )j∈N.

Let (A1, B1, [0, δ)) and(A2, B2, [0, δ)) be two skew-
adjoint discrete-spectrum control systems onH1 and
H2 respectively such thatAi is diagonal in the
basis (φi

j)j∈N for i = 1, 2. If the concatenation
of the spectra ofA1 and A2 is a Q-linearly in-
dependent family and if for everyj in N, i =
1, 2, 〈Bφi

j , φ
i
j+1〉 6= 0, then the two systems

(A1, B1, [0, δ)) and (A2, B2, [0, δ)) are simultane-
ously approximately controllable, that is, for every
(ψ1

0 , ψ
2
0) and (ψ1

1 , ψ
2
1) in H1 ×H2 such that‖ψi

0‖ =
‖ψi

1‖ i = 1, 2, for every δ, ǫ > 0, there exists an
admissible controlu ∈ L∞([0, T ], [0, δ)) steering the
system(Ai, Bi, [0, δ)) from ψi

0 to an ǫ-neighborhood
of ψi

1, i = 1, 2.

Fix η such that the spectrum of−∂2
θ + η cos(θ)

is non-resonant and eachB(n)
e , B(n)

o is connected.
We defineAη,e and Bη,e (resp.Aη,o and Bη,o) on
a subdomain ofHe (resp.Ho) as the restrictions of
Aη andBη to He (resp.Ho). The two skew-adjoint
discrete-spectrum control systems(Aη,e, Bη,e, [0, δ))
and(Aη,o, Bη,o, [0, δ)) satisfy the hypotheses of The-
orem 3. Theorem 2 follows.

VI. CONCLUSION

In this paper we consider the problem of controlling
the orientation of a planar molecule by the action
of a constant (in space) external field. We charac-
terize completely the controllability properties of this
system. Namely we proved that the system is not
approximately controllable since the state space is the
direct sum of two nontrivial integral manifolds (the
spaces of even and odd wave functions). In a sense,
this happens to be the only obstacle to controllability,
since the even and the odd part of the wave function
can be controlled simultaneously, keeping constant
their relative norm.
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