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Abstract
The article describes the possibility of describing

the electronic structure of the simplest atomic systems
within corpuscular physics theory. The proposed method
allows to derive the Rydberg frequency constant without
using quantum Bohr postulates. Adequate results of the
same type of calculation of the energy levels of the first
five chemical elements that are in the maximum degree
of ionization are presented.
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1 Introduction
At present, it is considered that the most effective way

to describe the electronic properties of a matherial is
a discrete-stochastic modelling of the spectral picture
of the energy characteristics of the matherial’s parti-
cles, implemented using methods of modern quantum
mechanical calculations [Miao et al., 2014; Sych and
Leuchs, 2015; Ogata, 2016; Nakajima and Tokura, 2017;
Han, Xu and Qin, 2018]. Along with this, there is an-
other opinion openly expressed by many well-known
scientists, for example, Professor N. Kobayashi of the
University of Tokyo: “This task is extremely difficult,
because the existing methods of modeling atomic and
molecular structures are imperfect and require too much
time. Progress in solving the task can be achieved both

by improving the numerical methods of direct calcula-
tions and increasing their reliability, and by developing
completely new methods based on completely different
principles of computation” [Kobaysi, 2007].

As already known, any utilitarian method of quantum
calculations, one way or another, uses the principle of
complementarity, which follows from the inevitability of
quantum jumps within a certain set of electronic levels,
initially postulated by N. Bohr [Roldan-Charria, 2014;
Robinson and Haven, 2015; Hansen, 2016]. The key
confirmation of the validity of this interpretation is the
theoretical justification within its framework of the Ry-
dberg frequency constant. In turn, the most vulnera-
ble point of the atom’s structure model of Bohr is due
to the criticism of the mathematical induction of quan-
tum and classical principals performed by him for the
purpose of correct description of actually observed lin-
ear spectrums. E. Rutherford also pointed out: “I think
your hypothesis has another very weak point. I have no
doubt that yourself are fully aware of this. How does an
electron decide at what frequency it will oscillate when
moving from one stationary state to another?” [Kumar,
2013].

However, Bohr and his supporters persistently insisted
on the absolute theoretical completeness of the proba-
bilistic interpretation of quantum mechanics developed
by them, the completeness of which, in turn, was ques-
tioned by A. Einstein, who was confident in the exis-
tence of a deeper physical level, including additional,
temporarily hidden information that strictly determines
the true laws of the quantum world. In other words, in



172 CYBERNETICS AND PHYSICS, VOL. 9, NO. 4, 2020

modern quantum theory, there is a situation of a clas-
sical “black box”, the input and output parameters of
which are well-known, and there is no explicit physi-
cal and mathematical description of the mechanism of
their cause-and-effect relationship at the current time,
one way or another.

Thus, the problem of complex re-evaluation of induc-
tive propositions of classical quantum mechanics, im-
plemented in the deductive framework of a systematic
approach, whose initial potential should help to elimi-
nate the key shortcomings of quantum mechanical cal-
culations, as well as simplify the mathematical synthe-
sis of effective models of electronic properties and struc-
ture of specific substances, becomes particularly relevant
[Kostyukov and Eremin, 2004; Kostyukov and Eremin,
2008; Eremin et al., 2010; Eremin et al., 2014].

The alternative interpretations proposed in this paper
are based on the deductive method of analyzing the in-
ternal structure and resulting properties of the systems
under study. Such a revision of the classical models of
the objects under study from the standpoint of the system
approach is necessary for an objective assessment of the
possibility of their effective use in the search for algo-
rithms for controlling certain processes. Because really
effective management is possible only with a sufficient
level of understanding of the control object.

These interpretations give a qualitatively different pic-
ture of the location of electronic orbitals in space, i.e.
they completely change the worldview of the original
quantum object and can potentially influence the choice
of certain ways to control its properties.

By the authors’ opinion the alternative relativistic for-
mulation of the linear spectra of hydrogen-like systems
and the alternative model of the electronic levels of the
hydrogen atom presented in this paper can increase the
accuracy and reduce the computational complexity of
models of quantum processes and phenomena. This,
in turn, will allow us to develop more efficient models
and algorithms for controlling such systems, which is
one of the tasks solved within such sections of Cyber-
netics as quantum control, oscillation control and opti-
mal control [Fradkov, 2017; Rabitz, 2012; James, 2005;
Doherty, 2000; Dong, 2010; D’Alessandro, 2008; Aver-
bukh, 2016; Jacobs, 2014; Youssry, 2020].

2 Classical Discrete-Stochastic Model
In the middle of the XIX century, it was experimentally

discovered that the passage of a light beam through a gas
located in the zone of action of an electrostatic discharge
leads to forming of a unique set of narrow spectral lines
that uniquely characterize the substance under study. At
the same time, a series of spectral lines of highly rarefied
hydrogen, physically observed in the red, green, blue and
violet sections of the optical spectrum’s visible range,
attracted particular attention of scientists.

The wavelengths’ numerical values of the electromag-
netic field of light corresponding to the considered lin-
ear spectrum were measured in 1868 by A. Angstrom

and amounted to 656.21, 486.07, 434.01 and 410.12 nm
respectively. In 1884, I. Balmer managed to find an em-
pirical formula that adequately describes the wavelength
of each listed line:

λ =
bm2

m2 − n2
, (1)

where n and m – natural numbers (n = 2; m = 3, 4, 5,
6); b – the longwave Balmer constant equals 364.56 nm.

In 1890 J. Rydberg derived a generalized equation that
allows us to calculate the frequencies of all theoretically
possible spectral lines of hydrogen:

fr =

(
1

n2
− 1

m2

)
R, (2)

where R – Rydberg’s frequency constant, equals
3.289842 · 1015 s−1; n – natural number, indicating se-
quential number of a series;m – natural number that start
with the value n+1 and characterize all lines of the n-th
series.

It should be noted that the spectral formula of the gen-
eral form (2) was initially derived empirically and for a
long time did not have an acceptable theoretical justifi-
cation, although it was confirmed experimentally with
a very high accuracy. However, the striking repeata-
bility of natural numbers in it and the objective univer-
sality of the Rydberg constant very evidently indicate a
deep physical meaning of the laws of the electron-atomic
structure of matter detected with its help, an abstract de-
scription of which is considered fundamentally impos-
sible within the framework of the traditional (inductive)
approach of classical physics.

The first attempt to build a qualitatively new (quantum)
theory of the structure of the atom was made in 1913 by
N. Bohr. It was based on two postulates that combined
the following set of fundamental assumptions accumu-
lated by that time. First – the regularity of the linear
hydrogen spectra revealed by Balmer and Rydberg. Sec-
ondly, the quantum nature of light emission and absorp-
tion discovered in 1900 by M. Planck and theoretically
justified in 1905 by A. Einstein. And the planetary model
of the atom, proposed in 1911 by E. Rutherford.

The Bohr’s first postulate regulates that atoms have sta-
ble states in which it does not emit energy. In this case,
they correspond to stationary electronic orbits, moving
along which the electron must have discrete values of
the moment of momentum that satisfy the condition:

mevnrn = n~, (3)

where me – the rest mass of the electron, equal to
9.109543 · 10−31 kg; vn – its linear velocity of circu-
lar motion along the n-th orbit; rn – the radius of the
electron orbit; ~ - the Dirac constant, equal to 1.054572 ·
10−34J · s (2π~ = h, h – the quantum Planck constant,
equal to 6.625 · 10−34J · s).
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The Bohr’s second postulate states that when an elec-
tron passes from one stationary orbit to another, a photon
is emitted or absorbed with an energy equal to the energy
difference of the appropriate electronic levels:

hfr = Eout − Ein, (4)

where Eout and Ein – are the energies corresponding to
the initial and final orbits. Based on such a hypothetical
interpretation, for the case of Eout > Ein an atom emits
a light photon; if Eout < Ein, the opposite situation is
observed, which is related to the atomic absorption of a
quantum of light [Bohr, 1913].

Thus, the initial theoretical assumptions postulated by
Bohr made it possible to mathematically express two
physical constants – the value of the first Bohr radius
and the Rydberg frequency constant. At the same time,
a planetary model of a hydrogen-like Rutherford’s atom
was used for their conclusion, in which the force of the
Coulomb interaction of elementary particles gives the ro-
tating electron a certain centripetal acceleration, i.e. the
basic law of the system dynamics has the form:

Ze2

4πε0r2n
=
mev

2
n

rn
, (5)

where Z – the sequence number of the atom; e – the ele-
mentary charge equal to 1.602189·10−19C; ε0 – the per-
mittivity of the vacuum, equal to 8.854188 · 10−12F/m.

On the one hand, using expression (5), systemically
combined with expression (3), Bohr derived a theoretical
formula for the radiuses of stationary electron orbits of a
hydrogen-like system:

rn = rB
n2

Z
, rB =

4πε0~2

mee2
, (6)

here rB – the value of the first Bohr radius, hypothet-
ically representing the electron orbit of the hydrogen
atom and equal to 0.529177 · 10−10m.

On the other hand, taking into account that the total
energy En of an electron evenly rotating around a sta-
tionary atomic nucleus in the n-th orbit consists of its
kinetic energy and the potential energy of the Coulomb
interaction of elementary particles, Bohr formed the ex-
pression:

En =
mev

2
n

2
− Ze2

4πε0rn
. (7)

The system combination of relations (5)–(7) gave the
result:

En = −
(
Z2

n2

)
1

2

mee
4

(4πε0)
2 ~2

, (8)

based on this, it was concluded that the energy states of
the atom are a sequence of electronic levels, given by
their numbers n (the main quantum numbers). In this
case, the first level is the main (normal) state, and all the
others are excited.

By assigning the appropriate values to the number n,
it became possible to obtain a hypothetical image of the
stationary orbits of the hydrogen atom, as well as to form
a scheme of potential transitions between them (Figure
1).

1.png

Figure 1. Bohr’s interpretation of the electron levels of the hydrogen
atom. a) diagram of the locations of stationary electronic orbits. b)
schematic graph of the hypothetical quantum jumps that regulate the
induction of linear spectral series of Lyman, Balmer, and Paschen.

In turn, based on the second Bohr’s postulate (4), the
transition of a hydrogen atom (i.e. for the case Z = 1)
from a certain excited state m to the stable state n emits
an energy quantum

hfr = −
(

1

m2
− 1

n2

)
mee

4

2 (4πε0)
2 ~2

, (9)
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therefore, the physically observed frequency of the cor-
responding light radiation can be represented as:

fr =

(
1

n2
− 1

m2

)
mee

4

2 (4πε0)
2 ~2h

. (10)

By comparing the empirical spectral formula (2) with
his theoretical equation (10), Bohr obtained an expres-
sion that fully corresponds to the experimentally mea-
sured value of the Rydberg frequency constant [Bohr,
1913]:

R =
mee

4

2 (4πε0)
2 ~2h

=
mee

4

8h3ε20
. (11)

It is generally recognized that Bohr’s description of the
electron levels of hydrogen was a significant step in the
development of atomic physics and laid the Foundation
for the modern quantum mechanics, introducing a world-
view picture of a series of quantum jumps into scientific
circulation. However, Bohr’s theory could not explain
the physical reasons for the implementation of certain
electronic transitions, as well as the intensity of the cor-
responding spectral lines. In addition, its significant dis-
advantage was the inability to adequately describe the
linear spectrum of the helium atom directly following
the hydrogen.

In 1923, L. de Broglie hypothesized that any atomic
structures independently possess both corpuscular and
wave properties. In turn, experimental confirmation of
the general universality of the wave-particle duality, as
well as the limited application of classical mechanics for
an adequate description of objects in the microworld led
to occurrence of the quantum mechanics, based on the
theoretical research of V. Heisenberg (matrix mechan-
ics) and E. Schrodinger (wave mechanics), as well as the
probabilistic interpretation of the wave function of M.
Born.

Thus, modern methods of quantum calculations, which
are being formed or improved over the past decades, are
based on the ”Copenhagen concept”, which includes:
the Bohr correspondence principle, the Heisenberg un-
certainty principle, the probabilistic interpretation of the
Schrodinger-Born’s wave function, the Broglie-Bohr’s
complementarity principle, and the collapse of the wave
function. Note that N. Bohr and his supporters insisted
on the scientific completeness of the named concept,
which was doubted by A. Einstein, confident in the exis-
tence of some ”hidden parameters” that determine quan-
tum effects at a deeper level.

3 Energy Diagrams of an Electronic Oscillator
At the end of the nineteenth century, it was discovered

that the laws of the Newtonian mechanics contradict ex-
perimental data obtained in the study of the movement
of fast elementary particles. In addition, it was found
that the existing theory of electricity diverged from the
equations of J. Maxwell, underlying the understanding

of light as an electromagnetic wave. In other words, it
became necessary to search for a paradigm that, explain-
ing these facts, would include the Newton’s dynamics as
the limiting case of describing small speeds. In 1905, A.
Einstein developed the basic tenets of the special theory
of relativity (relativistic theory), based on two postulates
introduced by him – the principle of relativity, which as-
serts the invariance of the laws of nature with respect to
the transition between inertial reference systems, and the
principle of invariance of the speed of light.

Taking into account relativistic effects that objectively
occur in any high-speed systems, the physically ob-
served mass of an electron m′, as well as the experimen-
tally measured distance between it and the atomic nu-
cleus r′, should be expressed by the Lorentz-Einstein’s
equations, at least in the context of modeling the linear
spectra of hydrogen-like systems:

m′ =
me√

1− v2/c2
; r′ =

r√
1− v2/c2

, (12)

hereme – the rest mass of an electron; r – the true radius
of its orbit; v – the real velocity of the electron; c – the
speed of light in a vacuum, equal to 299 792 458 m/s.

Therefore, the normal component of the kinetic energy
Te of an electron, determined by the centrifugal force
Frot resulting from its circular motion, can be repre-
sented as follows:

Frot =
m′v2

r′
=
mev

2

r
; (13)

Te = Frotr ⇒ Te = mev
2. (14)

In turn, the potential energy Pe of a rapidly rotat-
ing electron, due to the strength of its electrostatic
(Coulomb) interaction Fkul with the atomic nucleus, can
be expressed as follows:

Fkul =
Ze2

4πε0r′2
=
Ze2

(
1− v2/c2

)
4πε0r2

; (15)

Pe = Fkulr ⇒ Pe =
Ze2

4πε0r

(
1− v2

c2

)
. (16)

It is quite obvious that the stereotypical form of the
function (16) considered relatively to the distance be-
tween the electron and the atomic nucleus is a simple
hyperbolic graph. On the other hand, to increase its
general informativeness, i.e., to display the dependence
of Pe(r), simultaneously characterized by the current
electron speed, the authors suggest using the theoretical
scheme of the “planetary converter” (Figure 2).

In other words, there is a completely adequate cor-
puscular model, which has the following formulation.
First, an electron located on the surface of an atomic
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2.png

Figure 2. Visualization of mathematical models of the potential en-
ergy of an electron. a) graph of a function of the general form (16). b)
theoretical scheme of the “planetary converter”. c) graph of the func-
tion Pe(r) model-fixed with respect to the current electron velocity.

nucleus of radius rs is stationary in its own (atomic)
frame of reference and has the highest potential en-
ergy: Ps = Ze2/(4πε0rs). Second, an electron moving
evenly along a certain stable circular orbit of radius r has
a well-defined linear velocity v. Third, when the electron
orbit’s radius increases to infinitely long distance r∞, the
corresponding value v becomes equivalent to the speed
of light, and the kinetic energy of the electron, estimated
in the global reference system, is extremely permissible:
T∞ = mec

2.
In addition, the electronic spectrum of the studied sys-

tems is effectively described by the Planck’s quantum ra-
tio, which can be related to the above-mentioned atomic
parameters r and v:

E = nhf ; (17)

f =
v

2πr
⇒ E = nh

v

2πr
. (18)

It is easy to see that equations (16) and (18) use dif-
ferent physical quantities. The potential energy Pe is
expressed in terms of the velocity ratio v2/c2, and the
Planck’s energy E takes into account the main quantum
number n. The authors of the article believe that this dis-
crepancy can be eliminated by parametric substitution,
which does not contradict the concept of quantization in
principle:

v

c
→ n

m
⇒
√
1− v2

c2
=

√
1− n2

m2
. (19)

Thus, the dependency expression Pe(r) is converted to
the form:

Pe =
Ze2

4πε0r

(
1− n2

m2

)
. (20)

In turn, taking into account the model-fixed graph
Pe(r), as well as the law of conservation of energy, it
becomes possible to construct diagrams of the total en-
ergy of an elementary oscillator (Figure 3).

3.png

Figure 3. Energy diagrams of an electronic oscillator. a) graphs of
energy functions schematized with regard to the distance between the
electron and the atomic nucleus. b) graphs of energy functions schema-
tized with regard to the the linear velocity of the circular motion of the
electron around the nucleus.

The resulting scheme makes clear the situation
Te(v0) = E(r0, v0) = Pe(r0), which is characteristic
of the value of the electron’s first orbital velocity v0 in
the case of its even movement along the minimum sta-
ble orbit of radius r0. In this case, the Planck’s relation
(17), considered in the form (18), can be used to give
argumentative uniformity to functions (14) and (20).

Indeed, the first part of the considered equilibrium con-
dition for a hydrogen-like system Te(v0) = E(r0, v0),
i.e. an expression:

mev
2
0 = nh

v0
2πr0

; (21)
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allows to get the following intermediate result:

v0 =
nh

2πr0me
. (22)

In turn, the key component of the condition, converted
to the form Te(r0) = Pe(r0) with consideration of the
expression (22), i.e. the relation of the form:

me

(
nh

2πr0me

)2

=
Ze2

4πε0r0

(
1− n2

m2

)
; (23)

directly generates a formula for the radial values for the
entire set of stationary states, reasoned by the quantum
parameters n and m:

r0(n,m) =
4πε0
e2me

(
h

2π

)2
1

Z

(
1

n2
− 1

m2

)−1
. (24)

Comparing the presented equation with the traditional
Bohr radius formula in the form (6), we can state that
they are equivalent for m, tending to infinity. It is in-
disputable that the situation under consideration, i.e. the
possibility of such stable electron orbit, can take place
only in the complete physical absence of radiation fric-
tion. However, the electrons of a real hydrogen-like sys-
tem located in a hypothetical stationary state r0(1,∞),
described by the Rutherford’s force ratio (5) or its en-
ergy analog in the form (23), must be slowed down and
attracted by the atomic nucleus. In addition, the poten-
tial transition of electrons to an excited state rh(n,m) is
objectively caused by their acceleration to the minimum
value vh of the second orbital velocity.

4 The Systematic Continuous-Deterministic Model
Taking into account the above theoretical considera-

tions, we consider the corresponding variation of the
continuously-deterministic derivation of the parametric
formula for the radii of stationary electronic orbits, based
on the value of the second orbital velocity 1

2Te(vh) =
E(rh, vh) = Pe(rh).

The first part of the condition under consideration, i.e.
an expression of the form:

mev
2
h

2
= nh

vh
2πrh

; (25)

gives the corresponding intermediate result:

vh =
nh

πrhme
. (26)

In turn, the basic component of the condition for the
existence of a stable orbit of radius rh, which is char-
acteristic of the value of the electron’s second orbital ve-
locity, described by the relation (25), generates the equa-
tion:

me

2

(
nh

πrhme

)2

=
Ze2

4πε0rh

(
1− n2

m2

)
. (27)

Thus, the formula for radii for a set of stationary elec-
tron orbits, reasoned by quantum parameters n and m,
takes the form:

rh(n,m) =
2rB
Z

(
1

n2
− 1

m2

)−1
. (28)

Substituting in expression (28) the values n and m
corresponding to the spectral series of Lyman (n =
1;m(1) = 2, 3, 4, 5, 6), Balmer (n = 2;m(2) =
3, 4, 5, 6) and Paschen (n = 3;m(3) = 4, 5, 6), it be-
comes possible to obtain an alternative visualization of
the energy electronic levels of hydrogen (Figure 4).

4.png

Figure 4. An alternative model of the electronic levels of the hydro-
gen atom. a) the scheme of the arrangement of successive electronic
orbits. b) the schematic continuous graph of the long-wave dependence
of optical absorption generating the Lyman, Balmer, and Paschen se-
ries.
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The physical interpretation of the proposed model of
the energy levels of hydrogen spectral lines can be for-
mulated as follows. Basic stationary levels of electrons
take place for their circular orbits corresponding to dis-
crete values of the quantum number n at m → ∞,
and a series of excited orbitals are placed inside neigh-
boring basic levels. In this case, the minimum value
m(n) = n+1 corresponds to the electron orbit of the n-
th series with the largest radius. It is obvious that the tra-
ditional (Figure 1, a) and alternative (Figure 4, a) inter-
pretations of the spatial arrangement of the electron or-
bits of hydrogen are radically different from each other.

Taking into account the alternative model described
above, the normal energy state of hydrogen electrons,
characterized by the quantum parameters n = 1 and
m→∞, can be represented by the relations that directly
follow from expressions (17) and (20):

Ehnorm = nhfhnorm = hfhnorm;

Phnorm =
Ze2

4πε0rh

(
1− 12

lim
m→∞

m2

)
=

Ze2

4πε0rh
.

(29)
Hence, the potential-frequency condition Phnorm =

Ehnorm, which regulates the existence of excited elec-
tronic levels of a hydrogen-like system in a normal en-
ergy state, taking into account the formula of their orbital
radii (28), can be represented as:

Ze2

4πε0
· Z
2rB

(
1

n2
− 1

m2

)
= hfhnorm. (30)

Thus, the resulting frequency equation of the studied
linear spectrum, generated by continuous mathematical
transformations performed in the context of the proposed
approach, has the form:

fhnorm = Z2R

(
1

n2
− 1

m2

)
,

R =
1

h
· e2

4πε02rB
=
e4me

8ε20h
3
.

(31)

Comparison of the obtained formulation of fhnorm

with its traditional analogues shows that it is completely
identical to the generalized Rydberg-Balmer’s spectral
formula of type (2) at Z = 1, and structurally similar to
the Moseley’s x-ray law, empirically discovered in 1913:

fr = (Z − σ)2R
(

1

n2
− 1

m2

)
, (32)

where σ – is the theoretical constant of shielding the
atomic nucleus by electron shells, determined using the
method of D. Slater [Atkins, 1974].

However, we have to state that the theoretical justifica-
tion of the Rydberg’s frequency constant revealed by the
authors somewhat differs from its interpretation found
by Bohr (11). Namely, the proposed formulationR quite

clearly connects the inverse value of the Planck’s quan-
tum constant and the normalized potential energy of the
electrons of the hydrogen atom.

In turn, the physically observed energy outliers of
quantum transitions can be directly related to the
frequency resonances of attenuated harmonic oscilla-
tions by means of the well-known relation [Feynman,
Leighton and Sands, 1963]:

ωr = 2πfhnorm =
√
ω2
0 − 2β2, (33)

where β and ω0 - the attenuation coefficient and fre-
quency of natural harmonic oscillations of the electronic
shell.

At the same time, on the basis of repeatedly confirmed
experimental data [Lide, 2009], it can be safely stated
that β � ω0, therefore, taking into account the formula
(31), the values of the natural oscillation frequencies of
specific electronic orbitals of matter will be expressed
as:

ω0(n,m) ∼= ωr = 2πZ2R

(
1

n2
− 1

m2

)
. (34)

In addition, the studied linear spectrum considered in
the context of the proposed alternative model can be in-
terpreted as corresponding resonant modes of the opti-
cal absorption coefficient, which has the following theo-
retical description [Eremin and Eremina, 2016; Eremin,
Eremina and Zhilindina, 2016]:

χ(ω) =

√√
ε2Re(ω) + ε2Im(ω)− εRe(ω)

2
;

εRe(ω) = 1 +
2

3ε0
αRe(ω)N, N = ρ/M,

εIm(ω) =
2

3ε0
αIm(ω)N ;

αRe(ω) =
2e2

me
· ω2

0 − ω2

(ω2
0 − ω2)

2 − (2βω)
2
,

αIm(ω) =
2e2

me
· 2βω

(ω2
0 − ω2)

2 − (2βω)
2
;

(35)

where εRe(ω) and εIm(ω) – real and imaginary fre-
quency characteristics of the complex dielectric permit-
tivity calculated using the “cybernetic model” ε(jω);
αRe(ω) and αIm(ω) – classical frequency characteris-
tics of the electronic polarizability of particles; N – their
volume concentrations; ρ – the physical density of the
sample; M – the molecular mass of its formula unit.

The practical results of simulation of the long-wave
electronic characteristic of hydrogen in its normal en-
ergy state, implemented using equations (34) and (35),
are shown in Figure 4, b. In this case, the theoretical
analysis of the appearance of the named graph provides
the following physical interpretation of the intensity of
the serial lines of its spectrum.
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First, the calculated analog of the frequency charac-
teristic of the absorption coefficient of the form χ(λ),
which corresponds to the ultraviolet Lyman series and is
directly obtained for the value β(1,m) = 0, 01ω0(1,m),
turns out to be adequate to the behavioral strata of the
real intensities of its individual lines.

Second, the cascade decrease in the intensity of the ab-
sorption lines of the Balmer’s and Paschen’s series can
be modeled taking into account the relative increase in
the damping coefficient of the corresponding oscillation
processes due to the expansion of the internal space of
particles caused by their potential transitions to excited
electronic levels.

5 Modeling the Electronic Properties of Hydrogen
and Helium

Bohr’s theory was a major step in the development of
atomic physics and the creation of quantum mechanics.
However, based, on the one hand, on the laws of classical
physics, on the other – on quantum postulates, it could
not explain the intensity of absorption lines, as well as
the physical conditions for the implementation of certain
quantum transitions. Among other things, a very seri-
ous flaw in Bohr’s theory is the inability to describe the
atomic spectrum of helium – the simplest of inert gases,
located directly behind hydrogen in the periodic table of
elements.

Figure 5 presents the results of the computational ex-
periment aimed at deterministic modeling of the elec-
tronic properties of hydrogen, which is practically im-
plemented using equations (28), (31), (24) and (35).

The first graph (Figure 5, a) reproduces the experimen-
tal linear spectrum of hydrogen [Lide, 2009], which is in
a neutral ionized state, shown above a horizontal line,
under which there are vertical segments corresponding
to the values of absorption frequencies calculated by the
formula (31), completely equivalent to the use of the ex-
pression (32).

The second diagram (Figure 5, b) visualizes the linear
dimensions of the spherical electron orbit of the negative
hydrogen ion H− corresponding to its stationary energy
state (n = 1 and m → ∞), theoretically found by the
formula (28) and shown by a solid circular line. In addi-
tion, the dotted line displays the traditional interpretation
of the size of the hydrogen atom, considered as the value
of the first Bohr radius (6).

The third graph (Figure 5, c) simulates the optical re-
fraction spectrum:

n(ω) =

√√
ε2Re(ω) + ε2Im(ω) + εRe(ω)

2
, (36)

shown by a solid line and calculated on the basis of equa-
tions (24) and (35) for the same stationary parameters of
its electronic configuration as the previous characteris-
tic. In addition, it shows a point array that reflects the

experimental measurement of the simulated characteris-
tic [Lide, 2009].

The analysis of the total set of obtained results allows
us to state that the proposed relativistic method for cal-
culating the electronic spectrum of matter is, on the one
hand, as effective as the currently recognized methods of
quantum mechanical calculations. On the other hand, it
turns out to be much less expensive in terms of the com-
puting resources involved, since it is entirely based on
simple continuously deterministic mathematical models.

In turn, in order to test the universality of the described
approach, a complex simulation of the electronic proper-
ties of helium in a neutral ionized state was carried out,
implemented through the joint use of equations (2), (31)
and (32), the generalized results of which are presented
in Figure 6.

Analysis of the actual totality of the presented results
leads to confirmation of the circumstances of the well-
known flaw in Bohr’s theory, mentioned by the authors
at the beginning of this section. However, in contrast to
the linear spectrum of hydrogen, which physically exists
only for its neutral ionized state, helium has an additional
experimental characteristic, which is the linear spectrum
of the gas in state of primary ionization [Lide, 2009].

The results of a similar approach to the deterministic
calculation of linear spectra of single-ionized helium are
presented in Figure 7.

An objective assessment of the resulting changes in the
general correspondence of the frequencies of the exper-
imentally observed absorption bands to their theoretical
definition shows that the Rydberg (2) and Moseley (32)
equations are also ineffective, as in the previous case. In
turn, the frequency formula (31) gives a completely ac-
ceptable result. Therefore, there is actual confirmation
of the principle possibility of switching from probabilis-
tic methods of quantum computing to deterministic de-
scriptions of the electronic properties of matter based on
general relativity.

6 Conclusions
First, the relativistic approach proposed by the au-

thors, based on a critical revision of the completeness
of the Copenhagen quantum concept, makes it possible
to theoretically derive the original formula for calculat-
ing the radii of excited electron orbitals, as well as to
more strictly substantiate the numerical value of the Ry-
dberg frequency constant without using traditional quan-
tum Bohr postulates.

Second, the research obtained a reasonable replica-
tion of the deterministic location of the energy levels
of hydrogen-like systems, which radically changes the
generally accepted probabilistic interpretation of energy
transitions, traditionally interpreted as quantum jumps.
At the same time, the author’s model allows us to explain
the intensity of linear hydrogen spectra from the stand-
point of the theory of harmonic oscillations, i.e. without
using the Broglie-Bohr complementarity principle.
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5.png

Figure 5. Results of deterministic modeling of the electronic properties of hydrogen. a) linear spectrum of radiation. b) visualization of the
dimensions of a stable electron orbit. c) a graph of the long-wave dependence of the optical refractive index.

6.png

Figure 6. Comparative results of modeling the quantum properties of neutron helium. a) a linear spectrum of radiation calculated using the
Rydberg equation. b) the linear spectrum of radiation calculated on the basis of Moseley’s x-ray law. c) the linear spectrum of radiation calculated
on the basis of the relativistic model of the form (31).

Third, the set of proposed mathematical models gener-
ates a single deterministic description of the linear spec-
tra of neutral hydrogen and single-ionized helium, ex-
cluding probabilistic calculation methods: the Heisen-
berg uncertainty principle and the probabilistic interpre-
tation of the Schrodinger-Born wave function. In addi-
tion, the formula for calculating the radii of excited elec-

tron orbitals unambiguously connects the linear spectra
of a substance with the geometric dimensions of its elec-
tron orbits, i.e. it provides an adequate visualization of
the appearance of molecular structures.

In conclusion, we note that the presented results can
be useful both for bifurcation with the optical properties
of composite materials by changing their initial chemi-
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7.png

Figure 7. Comparative results of calculating the quantum properties of ionized helium. a) a linear spectrum of radiation calculated using the
Rydberg equation. b) the linear spectrum of radiation calculated on the basis of Moseley’s x-ray law. c) the linear spectrum of radiation calculated
on the basis of the relativistic model of the form (31).

cal composition, and for identifying clear feedbacks be-
tween the energy parameters of field effects and the di-
rect electronic responses of pure substances to them.

By the authors’ opinion, the new formulation of the
linear spectra of hydrogen-like systems and the model
of the electronic levels of the hydrogen atom, given in
this paper, in the case of their further development and
extension to non-hydrogen-like systems, can change the
approach to the consideration and modeling of quantum
systems. In particular, to move to their deterministic rep-
resentation, which will allow us to develop appropriate
cybernetic models with much greater accuracy and com-
putational efficiency compared to models based on the
consideration of quantum systems as black boxes, whose
input is known and with some probability the output is
known.
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