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Abstract: A brief survey of the passification method in adaptive control based on applying
the Yakubovich–Kalman–Popov Lemma to adaptive control systems is presented. The basics of
the method were established in 1974 in the paper Fradkov, A. L. (1974). Design of an adaptive
system of stabilization of a linear dynamic plant. Autom. and Rem. Control, (12), 1960–1966.
Various types of the adaptive control systems with implicit reference model such as the systems
of stabilization and tracking with the prescribed dynamics, systems with adaptive tuning of the
low order control laws, and combined signal-parametric system are described. Description of the
shunting method in the adaptive control problem is given. Some experimental adaptive control
results for the “Helicopter” benchmark are described.
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1. INTRODUCTION

The method of passification was born in 1974 (Fradkov,
1974) and since then was applied to a variety of design
problems for nonlinear and adaptive control systems (see
(Fomin et al., 1981; Fradkov, 1990; Fradkov et al., 1999;
Andrievskii et al., 1988; Andrievsky and Fradkov, 1994;
Andrievskii et al., 1996; Andrievskii and Fradkov, 1999)).
Our briev survet shows that the method indeed results in
simple adaptve control systems.

Consider systems affine in control

ẋ = f(x) + g(x)u, y = h(x), (1)

where x = x(t) ∈ Rn, u = u(t) ∈ Rm, y = y(t) ∈ Rl

are, respectively, the vectors of state, input, and output,
f(·), h(·) are smooth vector functions of the argument x,
and g(·) is the smooth matrix function. Let G be the given
m × l matrix.

Definition 1. System (1) is called G-passive if there exists
a nonnegative scalar function V (x) (storage function)
satisfying inequality

V (x) ≤ V (x0) +

t∫
0

u(t)∗Gy(t) dt (2)

for any solution x(t) of system (1) with x(0) = x0, x(t) =
x. The system is called strictly G-passive if there exist
a nonnegative scalar function V (x) and a scalar function
μ(x) such that μ(x) > 0 for x �= 0, (dissipation rate)
satisfying inequality

� This work was supported in part by the Russian Foundation
for Basic Research, projects no. 05-01-00869, 06-08-01386, and the
Scientific Program no. 22 “Control Processes” of the Presidium of
the Russian Academy of Sciences.

V (x) ≤ V (x0) +

t∫
0

u(t)∗Gy(t) − μ(x(t)) dt (3)

In (2) and below the asterisk stands for matrix transpo-
sition and complex conjugation of its arguments (in the
real case, simply transposition) . In what follows, we will
discuss the strict G-passivity of linear systems

ẋ = Ax + Bu, y = Cx, (4)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, and A, B, C are the
matrices of appropriate dimensions. For linear systems, the
storage function V (x) can always be selected as quadratic
form V (x) = 0.5x∗Hx (or the Hermitian form in the
complex case), and the dissipation rate can be chosen as
the squared Euclidean norm μ(x) = μ|x|2, μ > 0.

Note that if l = m and G = Im is the identity matrix,
then G-passivity coincides with the ordinary passivity. In
turn, passivity is very close to hyperstability introduced in
1964 by V.M. Popov for the linear systems (Popov, 1964)
and is a special case of dissipativity (Willems, 1972) where
integrand in (2) can be an arbitrary function of u, y (or u,
x).

Passivity plays an important role in the problems of design
of control systems because it is closely related to stability.
One can readily see that if the storage function V (x) is
positive definite, then for u = 0 the passive system (1) is
Lyapunov-stable, and for u = −Ky it is asymptotically
stable for any scalar or matrix K > 0. On the other hand,
this property is rather restrictive. For example, for the
strictly passive linear system (4) with transfer function
W (λ) = C∗(λI − A)−1B = β(λ)/α(λ), the polynomials
α(λ), β(λ) must be Hurwitz for m = l = 1 and the
difference of their degrees (so called relative degree) must
be unity. That is why an interest arises to the possibility
of making this system passive, that is, to passification by



means of an output or state feedback. In what follows, we
consider the following problems of passification by output
feedback.

Problem A. Find an m-vector function α(y) (m × m)-
matrix function β(y) such that system (1) with the output
feedback

u = α(y) + β(y)v, (5)
where v ∈ Rm is the new input, is strictly G-passive.

Problem B. Find an m-vector function α(y) such that
system (1) with the output feedback (5) is strictly G-
passive with fixed (m × m)-matrix function β(y).

For linear systems, a passifying feedback is also sought in
the class of linear laws, and the passification problems are
formulated as follows.

Problem AL. Find an m×l matrix K and an m×m matrix
L such that system (4) with the feedback

u = Ky + Lv, (6)
where v ∈ Rm is the new input, detL �= 0 is strictly G-
passive.

Problem BL. Needed is to determine an l × m matrix
K such that system (4) with the output feedback (6) is
strictly G-passive with the fixed matrix L.

The problems of G-passifiability, that is, determination
of the conditions for solvability of problems A, B, AL,
and BL, are important for application of the method of
passification. Solution of the problems of passification and
passifiability AL, BL were formulated in (Fradkov, 2003)
for the linear rectangle (l �= m) systems. For the special
case of quadratic (l = m) linear multidimensional systems,
similar problems were considered in (Gu, 1990; Abdallah
et al., 1990; Weiss et al., 1994; Huang et al., 1999).
Namely, theA special case of L = K was studied in
(Gu, 1990; Abdallah et al., 1990), while the results of
(Weiss et al., 1994; Huang et al., 1999) apply to the special
case of L = I.

Introduce the following additional notation to formulate
the solutions of the above problems:

δ(λ) = det(λIn − A), W (λ) = C(λIn − A)−1B,

A(K) = A + BKC, δ(λ, K) = det
(
λIn − A(K)

)
,

W (λ, K) = C
(
λIn − A(K)

)−1
B,

where K is an m × l matrix. Obviously, δ(λ, K) and
W (λ, K) are, respectively, the characteristic polynomial
and transfer matrix of the closed-loop system (4) with the
feedback

u = Ky + v. (7)

Let G be an m × l matrix. We determine ϕ(λ) =
δ(λ) det GW (λ), Γ = lim

λ→∞
λGW (λ). It is possible to show

that ϕ(λ) is a polynomial of the degree not greater than
n−m and invariant to feedback transformation (7). Since
Γ = GCB, the m×m matrix Γ is also invariant to feedback
transformation (7).

Definition 2. System (4) is called G-minimum phase if the
polynomial ϕ(λ) is Hurwitz (its zeros have negative real
parts). System is called strictly G-minimum phase if it is
minimum phase and Γ is nonsingular: det Γ �= 0. System

is called hyper-G-minimum phase if it is minimum phase
and Γ is symmetric and positive-definite: Γ = Γ∗ > 0.

Now, it is possible to formulate the solvability conditions
for the passification problems AL, BL.

Theorem 1. Let rankB = m. System (4) is strictly G-
passifiable by feedback (6) if and only if it is strictly G-
minimum phase.

Theorem 2. Let rankB = m. System (4) is strictly G-
passifiable by feedback (6) with the fixed matrix L if
and only if the system with the transfer matrix W (λ)L
is hyper-G-minimum phase.

The proofs of Theorems 1 and 2 can be found in (Fradkov
et al., 1999; Fradkov, 2003). They are based on solving the
following algebraic problem posed and solved in (Fradkov,
1976). Given complex-valued matrices A, B, C, G, and R
of respective dimensions n×n, n×m, l×n, m×l, and n×n
(m ≤ n, l ≤ n), at that R = R∗ ≥ 0. Find the conditions
for existence of the Hermitian n × n matrix H = H∗ > 0
and complex-valued m × l matrix K such that

HA(K) + A(K)∗H + R < 0, (8)
HB = (GC)∗, (9)

where
A(K) = A + BKC. (10)

Solution is provided by the following theorem.

Theorem 3. [(Fradkov, 1976)] For existence of the matrices
H = H∗ > 0, K that satisfy (8), (9), (10) and are real
in the real case, it is sufficient and, if rank(B) = m, then
necessary, that the system with the transfer matrix GW (λ)
be hyper-minimum phase.
Note 1. It is possible to demonstrate (Efimov and Frad-
kov, 2006) that Theorem 3 retains its validity if the matrix
A(K) is defined instead of (10), by the relation A(K) =
A + BK or by the relation A(K) = A + KC.
Note 2. It follows from the proof of theorem that if the
hyper-minimum phase condition is satisfied, then one
can always select a matrix K satisfying (8), (9), (10) in
the form K = −κG, where κ is any sufficiently large
scalar. At that, the lower boundary κ0 for κ is as follows
(Fradkov, 2003)

κ > κ0 = sup
ω∈R1

λmax

(
Re

(
GW (iω)

)−1
)

, (11)

where λmax is the maximum eigenvalue of the matrix.

Theorem 3 provides the solvability conditions for the
matrix inequalities relating to the classical Kalman–
Yakubovich–Popov Lemma (frequency theorem) for the
case of special relations with the form F (x, u) = yTu in
the positive definite matrix H and the feedback matrix
K. It may be called the feedback frequency theorem.
Theorems 1, 2 and 3 may be called the passification
theorems (Andrievskii et al., 1996; Fradkov, 2003; Bobtsov
and Nikolaev, 2005). There exist versions of the passi-
fication theorems for nonstrict matrix inequalities (weak
passification) (Saberi et al., 1990). Passification theorems
were extended to the linear distributed systems (Bondarko
et al., 1979; Bondarko and Fradkov, 2003) and nonlinear
systems (Byrnes et al., 1991; Fradkov and Hill, 1998)
and have numerous applications. Below applications to



the design of implicit model reference adaptive systems
(IMRAS) are considered.

2. APPLICATION OF THE PASSIFICATION
METHOD TO THE PROBLEMS OF ADAPTIVE

CONTROL

2.1 Adaptive Systems with Implicit Reference Model

Now we turn to the problem of control of the dynamic
plants under essential a priori parametric uncertainty and
the properties of external actions. Adaptation, that is,
automatic tuning of the controller in the course of normal
operation of the system, is one of the most universal and
effective methods of its solution

Adaptive control can rely either on identification of the
unknown parameters or on direct tuning of the controller
coefficients according to the given performance index (ob-
jective functional). The latter approach which is called
the direct adaptive control is usually based on defin-
ing the desired dynamics of the closed-loop system by
means of some reference system, reference model (Petrov
et al., 1972; Landau, 1979). The passification theorem
enabled design of adaptive controllers with implicit ref-
erence model having order much smaller than that of
the control plant. The main results are presented below,
more detailed presentation can be found in (Fomin et
al., 1981; Fradkov, 1990; Fradkov et al., 1999; Andrievskii
et al., 1988; Andrievskii and Fradkov, 1999).

Let us consider the control plant (4) assuming for sim-
plicity that m = 1. The following problem of adaptive
stabilization was formulated in (Fradkov, 1974): find the
adaptive output feedback law

u = θTy, θ̇ = Θ(y), (12)
allowing system (4), (12) to reach its objective

x(t) → 0, θ(t) → const for t → ∞. (13)

It is clear that objective (13) will be reached if the system
has a quadratic Lyapunov function

V (x, θ) = xTHx + 0.5(θ − θ∗)TΓ−1(θ − θ∗) (14)
with the properties

V (x, θ) > 0 for x �= 0, θ �= θ∗;

V̇ (x, θ) < 0 for x �= 0.
(15)

Existence in system (4), (12) of function (14) with the
properties of (15) was shown (Fradkov, 1974; Fradkov,
1976) to be equivalent to the existence of the matrix
H = HT > 0 and vector θ∗ ∈ Rl satisfying for some
GT ∈ R

l the relations
HA(θ∗) + A(θ∗)TH < 0, HB = CTGT, (16)

where A(θ∗) = A+Bθ∗C. In the case of solvable (16), the
adaptive controller (12) providing the objective (13) takes
on the form

u = θTy, θ̇ = −Γ(Gy)y. (17)

Since (16) is nothing but a special case of relations (8), (9),
(10) for m = 1, the property of hyper-minimum phase of
the transfer function GW (λ) = GC(λI − A)−1B meaning
that GW (λ) is minimum phase (its numerator is a Hurwitz
polynomial), has unit relative degree (the difference of

the degrees of the denominator and numerator), and
positive high-frequency gain GCB > 0 is the necessary
and sufficient condition for solvability of (16) relative to
the pair (H, θ∗).

System (4), (17) and its extension to the tracking problems
were named the adaptive systems with implicit reference
model (IMRAS) because the variable δ(t) = Gy(t) can
be shown to tend to zero for l > 1 faster than y(t),
that is, in the adaptive system gTy(t) ∼= 0) after the
transient time. Stated differently, δ(t) can be interpreted
as the generalized error of some implicit reference model.
This approach was extended to the distributed (Bondarko
et al., 1979; Bondarko and Fradkov, 2003) and delay
(Tsykunov, 1984) systems. Algorithm (17) was shown
[Ch. 7](Fomin et al., 1981) to reach objective (13) also for
the nonlinear plants resulting from introduction into the
right-hand sides of (4) of nonlinearities acting additively
with control and satisfying the sector constraints,

The above-listed results allow one to formulate the proce-
dural part of the method of passification as consisting of
the following stages.

1. The new output ỹ is determined as a linear combination
of the outputs ỹ = Gy so that the system becomes hyper-
minimum phase with respect to the input u and output
ỹ.

2. The control law is selected in the output feedback form.
For the nonadaptive case, it is given by

u = −κỹ = −κGy, (18)

and for the adaptive one by (17).

3. If the original control plant cannot be made passive
by selecting the output—for example, the plant transfer
function has the relative degree greater than unity, the
number of measurable variables is insufficient, and so on,
then its model is simplified so as to satisfy the passification
condition. For example, if there are stable multipliers with
small time constants in the denominator of the plant
transfer function, then one may try to drop them and carry
out design by the reduced model (Fradkov, 1990; Popov
and Fradkov, 1983; Ioannou and Kokotović, 1983; Fradkov,
1987). Other possible tricks are introducing a parallel
feedforward compensator (shunt, see Sec. 2.5), observer,
and so on.

We note that although the system G-passivity coincides
with passivity in output ỹ = Gy, for these two cases the
problems of passification do not coincide. Indeed, in the
first case the passifying feedback is sought in the form
u = −Ky + Lv, and in the second case, as u = κGy +
Lv, the sizes of the matrices K and κ being distinct. In
particular, if the output ỹ = Gy is scalar, then κ also will
be scalar. Then, the algorithm of adaptive stabilization
will be as follows:

u = κỹ,
dκ

dt
= −γỹ 2 (19)

(the so-called “universal controller” (Ilchmann, 1991)).
This algorithm was proposed in various publications be-
ginning from (Byrnes and Willems, 1984). Despite its
apparent simplicity (it has only one adjustable parameter)
and the same asymptotic properties as algorithm (17), it
is less flexible. In particular, algorithm (19) does not allow



one to realize the principle of implicit reference model. Let
us consider some special cases.

2.2 Adaptive Stabilization and Tracking for the Input–Output
Systems

Adaptive stabilization. Let the linear time-invariant sys-
tem (4) with scalar input and output be represented by
the input–output equation

A(p)y(t) = B(p)u(t), t ≥ 0, (20)
where u, y are scalar variables, A(p) = pn + an−1p

n−1 +
. . . + a0 and B(p) = bmpm + bm−1p

m−1 + . . . + b0 are
the polynomials of the operator of time differentiation
p ≡ d/dt. We denote by k the relative degree of system (20),
k = n−m > 0. In compliance with the formulation of the
problem of adaptive control, we hold that the coefficients
ai, bj (i = 0, . . . , n − 1, j = 1, . . . , m) are the unknown a
priori parameters of the control plant model (20).

We first consider the problem of stabilization of plant
model (20)—reduction of y(t) to zero from the nonzero
initial state. The desired dynamics of the process of
stabilization can be defined by some differential equation
to which the output of the plant y(t) must obey. In the
classical Model Reference Adaptive Systems (MRAS) this
equation is realized explicitly as the dynamic unit, that is,
the reference model incorporated in the adaptive controller
(Petrov et al., 1972; Landau, 1979). A somewhat different
scheme of solution is realized in the adaptive systems with
the implicit reference model (IMRAS) that are described
here.

We introduce the signal of adaptation mismatch (error)
σ(t) as

σ(t) = G(p)y(t), (21)
where G(p) = pl+ gl−1p

l−1 + . . . + g1p + g0 is some
given Hurwitz polynomial of the operator p ≡ d/dt.
The coefficients gi of the polynomial G(p) are defined
by the control system designer starting from the desired
dynamics of the stabilization process with regard for the
mentioned below requirement on the value of its degree l.
The adaptation algorithm must drive the mismatch σ(t) to
zero. By assuming that σ ≡ 0, we obtain that y(t) satisfies
the equation

G(p)y(t) = 0. (22)
Therefore, (22) defines the reference model which is not
explicitly realized in the adaptive controller (as a dynamic
unit) and is expressed implicitly through the coefficients
gi (i = 0, 1, . . . , l − 1). Therefore, (22) can be called the
IRM.

We take the following control law in the main loop:

u(t) =
l∑

i=0

ki(t)
(
piy(t)

)
, (23)

where ki(t) (i = 0, . . . , l) are the adjustable parameters of
the controller. In our problem, the following structure of
the adaptation algorithm stems from the requirement of
passifiability:

k̇i(t) = −γσ(t)piy(t), k0
i = ki(0), (24)

where γ > 0 is the gain of the adaptation algorithm
and k0

i are the initial values of the adjusted parameters,
i = 0, . . . , l.

We make use of Theorem 3 in order to check operability
of the closed-loop system with the plant model (20) and
adaptive controller (21), (23), (24). With this aim in view,
we introduce the vector G consisting of the coefficients gi

of the polynomial G(p) and the transfer function W (λ)
of the plant model (20) from the input u to the vector
[y, ẏ, . . . y(l)]T ∈ Rl+1 as

G = [g0, g1, . . . , 1], W (λ) =
B(λ)
A(λ)

⎡
⎢⎢⎣

1
λ
...
λl

⎤
⎥⎥⎦ , λ ∈ C.

By applying Theorem 3 to the system with the transfer
function GW (λ) we obtain the following conditions for
operability of the adaptive controller (23), (24) (Fradkov,
1974; Fomin et al., 1981; Fradkov, 1990):

1. the polynomial B(p) is Hurwitz and b0 > 0;

2. l = k − 1, where k = n−m is the relative degree of the
equation of the plant model (20).

These conditions imply that the plant must be minimum
phase and a sufficient number l of the derivatives of its
output must be used in the control law. The value of
l is defined by the relative degree of the plant transfer
function. Therefore, the order of the reference model may
be small even if the control plant obeys a high-order
equation. Additionally, the order of the plant model may
be unknown when designing the control algorithm, which
is a specialty of the systems with IRM as compared with
the traditional MRAS. Another specialty of these systems
lies in the possibility of using the IRM not only in the
problems of tracking the reference signal, but also in the
problems of stabilization. The model output, that is, its
response to the reference signal, is used in the systems
with explicit RM. In the problems of stabilization such
RM “grows blind.” Finally, on choosing the main loop
of the MRAS, an important part is usually played by
the matching condition (Petrov et al., 1972; Fomin et
al., 1981; Landau, 1979), which means that there must be
controller coefficients providing coincidence of the closed-
loop system equations with the RM equations. In many
cases, this condition is extremely restrictive. We note that
the above Condition 1 b0 > 0 implies that the common sign
of the coefficients in the right-hand side of the control plant
equations (20) must be known on designing the algorithm.
If it is negative, that is, b0 < 0, then one has just to change
the sign of the coefficient γ in the adaptation algorithm
(24).

With algorithm (24), it is important that in the course
of adaptation σ(t) usually decays much faster than the
system transients. As a result, the coefficients of controller
(23) reach steady state values, and the output y(t) of the
plant model (20) follows the IRM equation (22).

Robustification of the adaptation algorithms. The adap-
tation algorithm (24) is rarely used in practice in the form
in which it is set down, which is due to the fact that the
coefficients of controller (23) can grow indefinitely under
the action of external disturbances on the control plant
model (20) or in the presence of errors of the sensitive
elements. To avoid this, various methods of robustification



(“regularizing”) algorithm (24) (Fomin et al., 1981; Frad-
kov, 1979) were developed among which introduction of
the parametric feedback and introduction of the dead zone
are the basic ones.

The adaptation algorithm regularized by a parametric
feedback is as follows:
k̇i(t) = −γσ(t)piy(t) − α

(
ki(t) − k0

i

)
, k0

i = ki(0), (25)
where the coefficient α ≥ 0 of the algorithm parametric
feedback was introduced. This coefficient is chosen by
the designer of the control algorithm. One must bear
in mind that the robustification by feedback allows one
just to make the system trajectories to hit some bounded
neighborhood of the origin, rather than to make the
plant output to tend asymptotically to zero (Fomin et
al., 1981; Fradkov, 1990; Fradkov, 1979). With such a
method of regularization, the adaptation error signal σ(t)
also does not necessarily tend to zero.

The above method of regularization is applicable also if
in the control loop there are some nonlinearities (such as
signal quantization and time sampling in the digital con-
trol systems) and dynamic perturbations (small additional
inertiality in the control loop) (Fomin et al., 1981).

The passification-based implicit reference model method
was extended also to the problems of tracking the reference
signal (Fomin et al., 1981; Fradkov, 1990; Andrievsky
and Fradkov, 1994; Andrievskii and Fradkov, 1999; An-
drievskii, 1979). Now we dwell in more detail on the results
obtained.

The aforementioned requirement on the relation between
the number l of measured derivatives and the relative
degree k of the control plant transfer function proves to
be too rigid for may practical problems. Various kinds
of structures of the main loop of the adaptive control
systems—with control by an intermediate variable, with
adjustable-dynamics controller, and with parallel compen-
sator (“shunt”)—were obtained to soften this condition.
These structures rely on the conditions of Theorem 3.

Adaptive tracking systems [p. 391](Fomin et al., 1981),
(Andrievskii, 1979). Let us consider the problem of track-
ing the reference signal r(t) with the prescribed dynamics
by the plant model (20).

The adaptation error signal σ(t) is defined as
σ(t) = G(p)y(t) − D(p)r(t), (26)

where the polynomial G(p) was defined above and D(p)
is the operator polynomial like D(p)= dqp

q + dq−1p
q−1 +

. . .+d1p+d0. The adaptation algorithm must provide the
tendency of the mismatch σ(t) to zero: asymptotically or
with some error Δ > 0

|σ(t)| ≤ Δ for t ≥ t∗, (27)
where t∗ is some adaptation time.

The signal σ(t) may be interpreted as the error of satisfy-
ing the relation

G(p)y(t) = D(p)r(t), (28)
(28) being like (22) an IRM, but for the problem of
tracking.

By analogy with (23), we take the main-loop control law

u(t) = kr(t)
(
D(p)r(t)

)
+

l∑
i=0

ki(t)
(
piy(t)

)
, (29)

where kr(t), ki(t) (i = 0, . . . , l) are the adjustable parame-
ters. We make use of the following regularized adaptation
algorithm:

k̇r(t)=γσ(t)D(p)r(t)−α
(
kr(t)−k0

r

)
,

k̇i(t)=−γσ(t)piy(t)−α
(
ki(t)−k0

i

)
(30)

where γ > 0 and α ≥ 0 are the algorithm parameters
and k0

r and k0
i are the initial estimates of the suitable

values of the adjusted parameters, i = 0, . . . , l. As was
shown in (Fomin et al., 1981; Fradkov, 1990; Andrievsky
and Fradkov, 1994; Andrievskii, 1979), the dissipativity of
the closed-loop system (20), (28)–(30) is provided if the
aforementioned Conditions 1 and 2 and the conditions for
boundedness of the perturbations and the rate of variation
of the reference signal are satisfied.

We note that the above conditions do include neither the
degree q of the polynomial D(p) nor its coefficients. The
polynomial degree D(p) is limited by the possibility of
differentiating the command signal r(t) and is selected by
the control system designer. Further development of the
method is concerned both with extension of the class of
plants under consideration and development on its basis
of practical schemes of adaptive control. Some results are
set forth below.

2.3 Adaptive Tuning of the Low Order Controllers

The systems with IRM may be used for adaptive tuning
of the standard controllers in the course of system op-
eration (Andrievsky and Fradkov, 1994; Andrievskii and
Fradkov, 1999). Let us consider, for example, the following
proportional integral control law in the main loop:

u(t) = kP (t)e(t) + kI(t)

t∫
0

e(τ)d τ , (31)

where e(t) = r(t)−y(t) is the tracking error and kP (t) and
kI(t) are the adjusted coefficients of the controller. Let us
take the second-order IRM

T 2p2y(t) + 2ξTpy(t) + y(t) = r(t), (32)
where p = d/dt is the operator of time differentiation and
T and ξ are the parameters selected at IRM design and
defining the desired behavior of the closed-loop system.
By applying the operations of integration and filtering, we
represent the error of adaptation σ as

σ(t) = T 2y(t)ωf + (2ξ − Tωf)Tyf(t) −
t∫

0

ef(τ)d τ , (33)

where yf (t) and ef (t) are the outputs of the low-frequency
filters to whose inputs the respective signals y(t) and e(t)
are fed,

In this case, the adaptation algorithm (30) is as follows:

k̇P (t) = γσ(t)e(t) − α
(
kP (t) − k0

P

)
,

k̇I(t) = γσ(t)

t∫
0

e(τ)d τ − α
(
kI(t) − k0

I

)
. (34)



We note that algorithm (34) is designed using filtration
of the mismatch signal σ(t). Admissibility of such trans-
formation of the signal from the standpoint of stability
of the closed-loop adaptive system was substantiated in
[Sec. 7.1.3](Fomin et al., 1981).

2.4 Combined Signal-Parametric Control Algorithms with
Implicit Reference Model

Let us consider now the application of the passifica-
tion theorem to the design of the controllers of the
variable-structure systems (VSS) (Andrievskii and Frad-
kov, 1999; Utkin, 1992) and the signal-parametric adap-
tive controllers (SPAC) (Fradkov, 1990; Andrievskii et
al., 1988; Andrievskii et al., 1996; Andrievskii and Frad-
kov, 1999; Stotsky, 1994). We again consider the linear
system (4) whose control objective is lim

t→∞ x(t) = 0. Let
ensuring the sliding mode motion over the surface σ = 0,
where σ = Gy and G is the given l × n matrix, be chosen
as the auxiliary objective. We use the following control
algorithm:

u = −γ signσ, σ = Gy, (35)
where γ > 0 is some chosen parameter. As was shown
in (Fomin et al., 1981; Andrievskii et al., 1988), this
objective is reached for system (4), (35) if there exist a
matrix P = PT > 0 and vector K∗ such that PA∗ +
AT

∗ P < 0, PB = GC, A∗ = A + BKT
∗ C. As follows

from Theorem 3, these conditions are satisfied only if
the transfer function GW (λ), where W (λ) = C

(
λIn −

A)−1B, is hyper-minimum phase and the sign of the
high-frequency transfer coefficient, that is, the sign of
GCB which is assumed to be positive at the algorithm
design, is known. If these conditions are satisfied, then
for a sufficiently great coefficient γ we get lim

t→∞ x(t) =
0. To eliminate dependence of system stability on the
initial conditions and the plant parameters, a “signal-
parametric” (or “combined”) adaptive control algorithm
was proposed (Andrievskii et al., 1988; Andrievskii and
Fradkov, 1999) instead of (35):

u = KT(t)y(t) − γ signσ, σ(y) = Gy

K̇(t) = −σ(y)Γy(t), (36)
where Γ = ΓT > 0 and γ > 0 are the matrix and scalar
gains of the algorithm.

It is worth to note that convergence to zero in a finite
time is an important property of the VSS with forced
sliding modes. It is possible to prove (see, for example,
(Fradkov, 1990)) that this property is satisfied for any
bounded domain of the initial states of system (4), (36).

2.5 Shunting Method for Adaptive Systems

The problem of reducing the number of plant state
variables used in the adaptive control algorithm is all-
important. An appreciable number of recent publications
was devoted to the development of the adaptive control
system design methods intended to weaken the require-
ments on the current information about the plant state
variables which manifests itself also in the desire to reduce
the number of the derivatives of the plant output used
in the control algorithm (Druzhinina et al., 1996; Niki-
forov and Fradkov, 1994). Complexity (high order) of the

proposed algorithms which hinders their realization and
reduces their noise immunity is the disadvantage of the
existing methods. One of the approaches to this problem,
the shunting method is based on using a parallel compen-
sator (“shunting unit” or “shunt”) (Bar-Kana, 1987; Iwai
and Mizumoto, 1994; Kaufman et al., 1994; Andrievsky
and Fradkov, 1994; Andrievskii and Fradkov, 1999; Frad-
kov, 1994; Andrievsky et al., 1996). Its essence lies in
making the extended plant (comprising the control plant
itself and the compensator) hyper-minimum phase. The
plant and shunt outputs constitute the output used to
generate the control action. Therefore, the design of the
adaptation algorithm is based on the so-called extended
plant whose transfer function is equal to the sum of the
transfer functions of the plant itself and the shunt. The
requirement on system operability lies in Hurwitz stability
of the numerator of the transfer function of the extended
plant, which must be provided by certain choice of the
transfer function and the shunt parameters. In particular,
equality to unity of the relative degree of the extended
plant, which is involved in the strictly minimum phase
condition, is satisfied mechanically if the shunt transfer
function has the unit relative degree and the degree of the
shunt denominator is one less than the relative degree of
the plant transfer function.

Let us consider the following structure. We feed the control
signal u(t) both to the plant input and some additional
unit (“parallel compensator”, or “shunt”) whose output is
added to that of the control plant when generating the
control signal. The basic concept of this approach lies
in providing a strictly minimum phase property of the
extended plant comprising both the control plant itself
and the compensator. Let as before the control plant be
defined by (20). We introduce additional unit (shunt) with

the transfer function Wc(λ) =
Bc(λ)
Ac(λ)

, where Ac(λ), Bc(λ)

are polynomials of the degrees nc and mc, respectively,
nc = mc + 1, and Ac(λ) is a Hurwitz polynomial. The
output of the extended plant y(t) is the sum of the control
plant output and the output of the shunt to whose input
the signal u(t) is fed:

Ac(p)yc(t) = Bc(p)u(t),
y(t) = y(t) + yc(t), p ≡ d/dt. (37)

The extended plant has the following transfer function
from the input u(t) to the output y(t):

W (λ) =
Bc(λ)A(λ) + B(λ)Ac(λ)

A(λ)Ac(λ)

=
B(λ)

A(λ)Ac(λ)
. (38)

One can readily see that the relative degree k of the
extended plant (38) is k = n + n1 − max(m1 + n, m +
n1) = 1. Consequently, the condition for hyper-minimum
phase will be met if B(λ) is a Hurwitz polynomial. We
note that in this structure it is assumed that only the
plant output is measured and not its derivatives, which
substantially simplifies realization of the control algorithm
and improves its noise immunity.

The shunting unit may be selected differently. It was
suggested in (Andrievsky and Fradkov, 1994; Andrievskii
and Fradkov, 1999; Fradkov, 1994) to use as shunt a system



with the transfer function

Wc(λ) =
κε

(
ελ + 1

)k−2

(
λ + α

)k−1
, α > 0. (39)

The following Theorems 4 and 2.5.1 set forth the proper-
ties of the extended plant (38) with shunt (39).

Theorem 4. [(Andrievsky and Fradkov, 1994; Fradkov,
1994)] Let the function W (λ) (20) be minimum phase
(B(λ) is the Hurwitz polynomial) and have relative degree
k > 1 and B(0) > 0. Then, there exist number κ0 > 0
and function ε0(κ) > 0 such that the transfer function
W (λ) = W (λ) + Wc(λ) is hyper-minimum phase for all
κ > κ0 and 0 < ε < ε0(κ0).

Theorem 2.5.1 [(Andrievsky et al., 1996)] Let the func-
tion W (λ) be stable (A(λ) is the Hurwitz polynomial) and
have the relative degree k > 1 and W (0) > 0. Then, for
any ε > 0 there exists a sufficiently great κ0 such that
W (λ) = W (λ) + Wc(λ) is hyper-minimum phase for all
κ ≥ κ0.

It follows from Theorem 4 that introduced can be the
shunt (39) of the order deg(As(λ)) = k − 1 = n −
m − 1 which for a sufficiently large κ and sufficiently
small ε satisfies the condition for hyper-minimum phase
of the extended plant (38) for any minimum phase control
plant and an arbitrary bounded domain of parameters.
It follows from Theorem 2.5.1 that for another way of
selecting the parameters of the shunt (39) the condition
for hyper-minimum phase is satisfied for the stable (and,
possibly, non-minimum phase) plants. In this case, the
shunt equation can be simplified by taking Wc(λ) = κ/(λ+
α) instead of (39).

We note that the above statements guarantee satisfaction
of the condition for hyper-minimum phase either for the
minimum phase or stable control plants, but in some
narrower domain of feasible values of the plant param-
eters it is possible to make the shunted system hyper-
minimum phase simultaneously for unstable and non-
minimum phase plants. Another advantage of this way
of shunting is the possibility of selecting a small value of
the static shunt transfer coefficient, which in the problems
of tracking leads to small error caused by using in the
control law the output y(t) of the extended plant (38)
instead of the output y(t) of the control plant itself.
The shunting method underlies new combined structures
of the adaptive control systems uniting the methods of
passification, shunting, and identification on the sliding
modes and design of the robust controllers for solution
of the applied control problems (Andrievskii and Frad-
kov, 1999; Andrievsky et al., 1996; Andrievsky and Frad-
kov, 2002; Andrievsky and Fradkov, 2003a; Andrievsky
and Fradkov, 2003b; Fradkov and Andrievsky, 2004; Frad-
kov and Andrievsky, 2005).

2.6 Applications

Many recent technical and scientific publications are de-
voted to the design of laboratory stands controlled by
personal computers. In this connection, the problems of
control of various kinds of the helicopter laboratory set-
up are of great interest. One of the impressive devices

of this kind is represented by the “Helicopter” bench-
mark (Apkarian, 1999) intended for testing the flight
control laws under varying conditions. A photograph of
the “Helicopter” is shown in Fig. 1. Experimental results
for adaptive control of the “Helicopter are presented in
(Andrievskii et al., 2005; Andrievsky et al., 2005; An-
drievskii and Fradkov, 2006; Andrievsky et al., 2007; Frad-
kov et al., 2007a).

Fig. 1. Photograph of the “Helicopter” benchmark.

Among other applications are adaptive synchronization
of chaotic systems (Fradkov and Markov, 1997; Fradkov
et al., 2000; Andrievsky and Fradkov, 2000; Andrievsky,
2002; Fradkov et al., 2006; Fradkov et al., 2007b) and
irrigation systems (Tsykunov, 1984).

3. CONCLUSIONS

The algorithms of the passification method that were born
by the frequency theorem have inherited its procedural
simplicity and clarity of application. Over more than in
thirty years of its history the method was considerably de-
veloped both in theoretical and practical terms. Quite real
application fields came into existence in the flight control
and the message transmission by modulated chaotic sig-
nals. Finally, new experimental confirmations of adaptive
system operability appeared. They indicate to practicality
of the approach whose theoretical fundamentals were laid
in the works of V.A. Yakubovich.

At the same time, a number of problems still remain
unsolved. Also there are actively explored fields of research
among which the recent works on the necessary and suffi-
cient conditions for robust passification under parametric
norm-bounded indefiniteness (Peaucelle et al., 2005) and
on the necessary and sufficient conditions for adaptive
passification (Peaucelle et al., 2006) deserve mentioning.

A practically important question of selecting the matrix
G providing passivity or minimum phase of the system
with the transfer function GW (λ) still remains unsolved
(in the existing publications it was solved only for the
zero relative degree W (λ) (Sun et al., 1994)). Finally, a
new path of research concerned with the adaptive control
under limited throughput of the communication channels
deserves mentioning (Fradkov et al., 2006).
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