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Abstract: A problem of dynamical reconstruction of a control for a parabolic
obstacle problem is considered. A solving algorithm for this problem is presented.
This algorithm is stable with respect to informational noise and computational
errors. It adaptively takes into account inaccurate measurements of phase trajec-
tories and is regularizing in the sense that the final result becomes better as the
input information becomes more accurate. The algorithm suggested in the paper
is based on the theory of positional control. The main element of this algorithm is
a procedure of stabilizing some auxiliary functionals of the Lyapunov type.
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1. PROBLEM STATEMENT

A linear distributed system

xt(t, η)−4Lx(t, η) = u(t, η) + F (t, η)

a.e. on {(t, η) ∈ T × Ω : x(t, η) > µ(η)},

xt(t, η) = max{u(t, η)+F (t, η)+4Lµ(η), 0} (1)

a. e. on {(t, η) ∈ T × Ω : x(t, η) = µ(η)},

x(t, η) ≥ µ(η) ∀ t ∈ T, for a. a. η ∈ Ω;

x = 0 a. e. on T × Γ,

µ ∈ H2(Ω), µ(σ) ≤ 0 a. e. on Γ.

is considered in this paper. Here T = [0, ϑ],
ϑ < +∞; Ω ⊂ Rn is a simply connected
open and bounded domain with a sufficiently
smooth boundary Γ; 4L is the Laplace opera-
tor, i.e., 4Lx(η) =

∑n
j=1 ∂2x(η)/∂η2

j ; F (t, η) ∈

L2(T ; L2(Ω)) is a given function; u(t, η) is an un-
known disturbance. System (1) describes, for ex-
ample, a process of oxygen diffusion in an absorb-
ing tissue. A similar system, introduced and inves-
tigated in (Magenes, 1977), was called “the par-
abolic obstacle problem” (Barbu, 1984). From the
feedback control theory’s standpoint, the obsta-
cle problem was investigated, for example, in the
works (Blizorukova and Maksimov, 2003; Maksi-
mov, 2000, § 3, ch. 3).

The problem can be formulated in the following
way. At discrete and sufficiently frequent instants

τi ∈ T, τi = τi+1 + δ, i ∈ [1 : m− 1],

τ0 = 0, τm = ϑ,

the phase state x(τi, η) = x(τi; x0,
u(·)) ∈ H = L2(Ω) of system (1) is
inaccurately measured. Hereinafter the symbol
x(·; x0, u

∗(·)) ∈ C(T ; H) denotes a solution of (1).
This unknown solution depends on a time-varying
unknown control u(·) = u∗(·). As is well known,
under the assumption



x0(η) ∈ H0
1 (Ω), x0(η) ≥ µ(η) a. e. on Ω

(throughout the following this assumption is con-
sidered to be fulfilled), there exists a unique
solution of problem (1) with the properties
(see (Barbu, 1984, corollary 4.4)):

x(·, x0, u
∗(·)) ∈ L2(T ;H2(Ω)) ∩ C(T ;H1

0 (Ω)),

x0
t (·, x0, u

∗(·)) ∈ L2(T ; H).

Results of measurements ξh
i = ξh(τi) ∈ H satisfy

the inequality

|ξh
i − x(τi)|H ≤ h, i ∈ [0 : m− 1], (2)

where h ∈ (0, 1) is the level of informational noise.
It is required to design an algorithm that allows
us to reconstruct (synchronously with the process)
some unknown input u∗(·) ∈ L2(T ; U) generating
the unknown output x(·), i.e., it is required to find
an input u∗(·) such that the solution x(·; x0, u

∗(·))
corresponding to this disturbance coincides with
x(·). This is the meaningful statement of the
problem.

The problem described above is embedded into
the class of inverse problems and, in more general
context, into the class of ill-posed problems. Such
problems in a posteriori statement were stud-
ied by many authors. In (Kryazhimskii and Os-
ipov, 1983) a method of dynamical reconstruction
of an unknown input was suggested for a finite
dimensional dynamical system affine in control for
the case when a control under reconstruction at
every time instant is an element of a priori given
convex bounded and closed set P , i.e., u(t) ∈
P for t ∈ T . Later the method was extended
to systems described by differential equations of
various types (see (Maksimov, 2000; Osipov and
Kryazhimskii, 1995; Osipov et al., 2003)). The
method is based on the theory of positional con-
trol (see (Krasovskii and Subbotin, 1974)) and on
the smoothing functional and discrepancy meth-
ods (see (Tikhonov and Arsenin, 1979)), which are
well known in the theory of ill-posed problems.

In the present work, the method of dynamical
regularization is applied in order to reconstruct a
right-hand side in the parabolic obstacle problem.

2. THE APPROACH TO SOLVING THE
PROBLEM

In this section the method used for solving the
problem considered in the paper is described. This
method follows (Maksimov, 2000; Kryazhimskii
and Osipov, 1983; Osipov and Kryazhimskii, 1995;
Osipov et al., 2003).

Let U(x(·)) be the set of all inputs u(·) ∈ L2(T ; U)
that are compatible with x(·), i.e.,

U(x(·)) = {u(·) ∈ L2(T ;U) : x(·; x0, u(·)) = x(·)},

ΞT be the set of measurements, i.e., the set of
all piecewise constant functions ξ(·) : T → Z,
Ξ(x(·), h) be the set of all h-accurate measure-
ments, i.e., the set of all functions ξh(·) ∈ ΞT

satisfying (2).

Let us introduce an auxiliary system M (a model).
A trajectory of this model denoted by

wh(·) = wh(·; wh
0 , vh(·)) ∈ C(T ;H).

depends on a control. An initial state wh
0 of the

model is chosen by using the value ξh
0 of measure-

ment at the initial time moment in accordance
with some rule Wh fixed in advance:

wh
0 = Wh(ξh

0 ) ∈ X0 ⊂ H. (3)

Here X0 is the given set of all initial states of
the model. In particular, if the initial state x0 is
known then it is natural to suppose X0 = {x0}.
Model control rules are identified with pairs Sh =
(∆h,Uh), where

∆h = {τh,i}mh
i=0 (4)

is a partition of the interval T into half-intervals
[τh,i, τh,i+1), τh,i+1 = τh,i + δ, δ = δ(h), τh,0 = 0,
τh,mh

= ϑ; Uh is a function taking every triple
(τi, ξ

h
i , wh(τi)) to an element

vh
τi,τi+1

(·) = Uh(τi, ξ
h
i , wh(τi)) ∈ L2([τi, τi+1]; U),

(5)
where τi = τh,i, wh(τi) = wh(τi; wh

0 , vh(·)), ξh
i =

ξh(τi), ξh(·) ∈ Ξ(x(·), h), the symbol va,b(·) de-
notes a contracted measure of the function v(·)
into the half-interval [a, b). Thus, the quadruple
(M,Wh, ∆h,Uh) for every h ∈ (0, 1) determines
some algorithm Dh on the space of measurements
ξ(·) ∈ Ξ(xr(·), h) (Dh : ΞT 7→ UT ) forming
an output vh(·) = Dhξ(·) according to feedback
principle (3)–(5). The algorithm Dh is identified
with the quadruple (M,Wh, ∆h,Uh). The result
of work of the algorithm on the interval T is a
piecewise constant control vh(·) of the form

vh(t) = vh
i , t ∈ [τi, τi+1).

Let the following condition be fulfilled.

Condition 1. The set U∗(x(·)) of inputs from
U(xr(·)) with minimal L2(T ; U)-norm is one-
element, i.e., U∗(x(·)) = {u∗(·;x(·))}.

Thus,

u∗(·; x(·)) = arg min{|u(·)|L2(T ;U) : u(·) ∈ U(x(·))}.
A family Dh, h ∈ (0, 1) of operators from ΞT to
UT is called regularizing if

lim
h→0

sup{|Dhξh(·)− u∗(·;x(·))|L2(T ;U) :

ξh(·) ∈ Ξ(x(·), h)} = 0.



The goal of the present work is to construct a
regularizing family

Dh = (M,Wh, ∆h,Uh), h ∈ (0, 1) (6)

of modeling algorithms of the form (2)–(5).

After a model and its initial state (3) are cho-
sen, the work of the algorithm Dh corresponds
to the following outline. First, before the start
time t0 = 0, a disturbance h and a partition
∆ = ∆h = {τi}m

i=0, (τi = τh,i) of the interval
T are fixed. At the i-th step carried out during
the time interval [τi, τi+1), the following sequence
of actions takes place. An output x(τi) is inaccu-
rately measured, i.e., a value ξh

i ∈ H with prop-
erties (2) is obtained. Then the model control is
determined by (5). After that the next part of the
model trajectory wh(t), t ∈ (τi, τi+1] is formed in
addition to wh(t), t ∈ [t0, τi] (memory correction).
The procedure stops at the moment ϑ.

Construction of the family of algorithms Dh is
based on Theorem 1 formulated below. Let us
fix a functional Λ0(·, ·) on the Cartesian product
C(T ;H)× C(T ;H).

Definition 1. (Maksimov, 2000) A family Dh, h ∈
(0, 1) of positional modeling algorithms is said to
be Λ0-stable if there exist functions k1(·), k2(·),
k3(·): [0,+∞) → [0,+∞) such that k1(h) → 1,
k2(h) → 0, k3(h) → 0 as h → 0, and, for
every measurement result ξh(·) ∈ Ξ(x(·), h), the
inequalities

|vh(·)|L2(T ;U) ≤ k1(h)|u∗(·; x(·))|L2(T ;U) + k2(h),
(7)

Λ0(x(·), wh(·)) ≤ k3(h) (8)

hold.

Here vh(·) = Dhξh(·) and wh(·) is the model
motion generated by the algorithm Dh for the
measurement result ξh(·).
The following theorem is true.

Theorem 1. (Maksimov, 2000) Let a) a family Dh

of positional modeling algorithms be Λ0-stable,
b) for every hk > 0 (hk → 0+ as k → ∞),
ξhk(·) ∈ Ξ(x(·), hk), whk(·) = whk(·; whk

0 , vhk(·)),
vhk(·) = Dhk

ξhk(·), the convergences

vhk(·) → v(·) weakly in L2(T ;U),

Λ0(x(·), whk(·)) → 0 as k →∞
imply the inclusion v(·) ∈ U(x(·)). Then the
family Dh, h ∈ (0, 1) is regularizing.

3. SOLVING ALGORITHM

In this paper, it is considered the case where
a control is a norm-square integrable function,

i.e., u∗(·; x(·)) ∈ L2(T ;U). Let the model M be
described by

wh
t (t, η)−4Lwh(t, η) = vh(t, η) + F (t, η)

a. e. on {(t, η) ∈ T × Ω : wh(t, η) > µ(η)},

wh
t (t, η) = max{vh(t, η) + F (t, η) +4Lµ(η), 0}

(9)
a. e. on {(t, η) ∈ T × Ω : wh(t, η) = µ(η)},

wh(t, η) ≥ µ(η) ∀ t ∈ T, for a. a. η ∈ Ω;

wh = 0 a. e. on Γ× T,

i.e., a copy of system (1) is taken as a model. Let
a number a > 0 be chosen such that

x0 ∈ X0 = {x ∈ H0
1 (Ω) : |x|2H +ϕ(x) ≤ a < +∞}.

Here ϕ(y) is the indicator function of the set
K = {y ∈ L2(Ω) : y(η) ≥ µ(η) for a.a. η ∈ Ω},
i.e., ϕ(y) = 0 if y ∈ K, ϕ(y) = +∞ otherwise.

A family of partitions ∆h of the interval T , and a
function α(h) : R+ → R+ satisfying the following
conditions:

hδ−1(h) ≤ C, δ(h)α−2(h) ≤ C,

α(h) → 0, δ(h) → 0, (10)

(h + δ(h))α−1(h) → 0, as h → 0+

are taken. Here C > 0 is a constant that does not
depend on h.

The family Wh of t0-algorithms is defined by
rule (3), where

wh
0 ∈ B(ξh

0 ) = {x ∈ X0 : |ξh
0 − x|H ≤ 2h}. (11)

From inequality (2) and the inclusion x0 ∈ X0, it
follows that B(ξh

0 ) 6= ∅.
Let the model control law Sh = (∆h,Uh) be
defined by rules (4), (5), where

Uh(τi, ξ
h
i , wh(τi)) = vh

i

= arg min{l(α, v, si) : v ∈ U},
l(α, v, si) = 2(si, v)+α(h)|v|2U , si = wh(τi)−ξh

i ,

i.e.,
vh

i = −α−1si. (12)

Let a functional Λ0 have the form:

Λ0(x(·), wh(·)) = |x(·)− wh(·)|C(T ;H).

The following theorem is true.

Theorem 2. The family of positional modeling
algorithms Dh (6) of the form (3)–(5), (9), (11),
(12) satisfies the conditions of Theorem 1 and is
regularizing.



PROOF. In order to show that the family Dh (6)
of the form (3)–(5), (10), (11) is Λ0-stable, it is
convenient to estimate the variation of the value

εh(t) = |wh(t)− x(t)|2H

+ α(h)

t∫

t0

{|vh(τ)|2H − |u∗(τ)|2H} dτ

for every t ∈ T .

Notice that system (1) is equivalent to the inclu-
sion (see [2, pp. 138–140])

xt(t, η)−4Lx(t, η) + β(x(t, η)− µ(η))

− F (t, η) 3 u(t, η), (t, η) ∈ T × Ω,

x(t, η)|Γ = 0, t ∈ T, (13)

x(t0, η) = x0(η), η ∈ Ω,

β(r) = 0 if r > 0,

β(0) = (−∞, 0], β(r) = ∅ for r < 0.

In this case, taking into account inclusions (9),
(12) and monotonicity of the mapping β, the
inequality

1/2d|µh(t)|2H/dt ≤ (u∗(t)− vh(t), µh(t)) (14)

holds for almost all δi = [τi, τi+1). Here µh(t) =
x(t)− wh(t). It is readily seen that the estimate

(wh(τi)− ξh
i , µh(t)) ≤ k∗

(
h +

t∫

τi

{|wh
τ (τ)|H

+ |xτ (τ)|H} dτ
)
|µh(t)|H − |µh(t)|2H

(15)

and the inequality

(u∗(t)−vh(t), µh(t)) ≤ (u∗(t)−vh(t), ξh
i −wh(τi))

+ c1{|u∗(t)|+ |vh(t)|}

×
(
h +

t∫

τi

{|wh
τ (τ)|H + |xτ (τ)|H} dτ

)

are fulfilled for t ∈ δi. In this case, for a.a. t ∈ δi

1/2d|µh(t)|2H/dt ≤ (u∗(t)− vh(t), ξh
i − wh(τi))

+ ρi(t, h, δ),
(16)

where

ρi(t, h, δ) = c2{|u∗(t)|U + |vh(t)|U}

×
(
h +

t∫

τi

{|wh
τ (τ)|H + |xrτ (τ)|H} dτ

)
.

Let a number h∗ > 0 be chosen in such a way that
d(h) > Q = |u∗(·)|L∞(T ;U) for h ∈ (0, h∗).

Applying (12) gives

εh(t) ≤ εh(τi) + c2

t∫

τi

{[|u∗(τ)|U + |vh(τ)|U ]} dτ

×
(
h+

t∫

τi

{|wh
τ (τ)|H + |xτ (τ)|H} dτ

)

(17)

≤ εh(τi) + c2

(
h2 + 3δ

t∫

τi

{|u∗(τ)|2U |vh(τ)|2U}
)

dτ

+ 4δ2

t∫

τi

{|wh
τ (τ)|2H + |xτ (τ)|2H}dτ

for t ∈ δi. Hence, the inequality

εh(t) ≤ εh(0) + c3h(1 + h/δ)

+ c4δ
(
1+

t∫

0

{|u∗(τ)|2U + |vh(τ)|2U}dτ
) (18)

holds for t ∈ T . From (18) and the inclusion
u∗(·) ∈ L2(T ; U) it follows that

εh(t) ≤ εh(0) + c3h(1 + h/δ) + c5δ

+ α|u∗(·)|2L2(T ;U) + c4δ
2

i(t)∑

j=0

|vh
j |2U ,

(19)

where i(t) denotes the integer part of t. From (12)
it follows that

|vh
i |2U ≤ 2(νh

i + h2)α−2 ≤ c6(µh
i + h2)α−2, (20)

where νh
i = νh(τi) = x(τi) − wh(τi). Combining

(19) and (20) and using the relations

εh(0) ≤ 4h2, hδ−1(h) ≤ C,

hα−1(h) → 0 as h → 0,

we get

µh
i ≤ εh(0) + c3h(1 + h/δ) + c5δ + α|u∗(·)|2L2(T ;U)

+ c4c6

i−1∑

j=0

δ2(µh
j + h2)α−2 ≤ c7(h + δ + α)

+ c8δ
2α−2

i−1∑

j=0

µh
j .

From the Gronwall inequality and the inequality
δ(h)α−2(h) ≤ C, it follows that the estimate

µh
i ≤ c7(h + δ + α) exp{c8ϑδ/α2} ≤ c9(h + δ + α)

is true. Summing the right-hand and left-hand
sides of inequality (20) over i yields

δ2
mh−1∑

j=0

|vh
j |2 ≤ c6δ

2
mh−1∑

j=0

(µh
i + h2)α−2

≤c10δα
−2(α + h + δ).

(21)



Using (10), (19), and (21), it is easy to get

εh(t) ≤ c11(h + δ + δ2α−2 + hδα−2) ≤ c12(h + δ).
(22)

Hence,

|vh(·)|2L2(T ;U) ≤ |u∗(·)|2L2(T ;U) + c12(h + δ)α−1.

Therefore, inequality (7) holds when

k1(h) = 1, k2(h) =
(
c12(h + δ(h))α−1(h)

)1/2
.

Inequality (8) follows from (22) if k3(h) = c13(h+
δ(h) + α(h)), where c13 is a constant, which can
be obtained in an explicit form.

The theorem is proved.
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