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Abstract: This is part I of a two part paper on an
axis-symmetric fractional diffusion-wave problem. In
this part we focus on the response of the system sub-
jected to external excitation. We define the problem in
terms of Riemann-Liouville fractional derivatives and use
modal analysis approach to reduce the continuum prob-
lem to a countable infinite degrees-of-freedom problem
for which solution could be found in closed form. Here
we use Gr̈unwald-Letnikov approximation to find a nu-
merical solution to the problem. This will allow us to
solve axis-symmetric fractional optimal control problems
which could not be solved in closed form. We validate
the scheme by comparing the numerical results with the
analytical solutions. The formulation and the approach
presented here extends our earlier work on fractional dif-
fusion in 2-dimension to axis symmetric case.
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1 Introduction

Fractional derivatives are generalizations of ordinary
differentiations and integrations to non-integer orders.
Some of the definitions of fractional derivatives pro-
posed include Riemann-Liouville, Grünwald-Letnikov,
Weyl, Caputo, Riesz and Marchaud derivatives ([Old-
ham and Spanier, 1974], MillerRoss93, [Samko, Kil-
bas and Marichev, 1993], [Podlubny, 1999]). Fractional
derivatives arise in many physical problems, for exam-
ple frequency dependent damping behavior of materials,
relaxation functions for viscoelastic materials, fractional
PIλDµ control of dynamical systems, motion of a plate
in a Newtonian fluid, and phenomena in electromagnetics
and acoustics ([Podlubny, 1999]).

In this paper we focus on an axis-symmetric Fractional
Diffusion Wave Equations (FDWEs). The FDWEs are ob-
tained by replacing the integer order (time and/or space)
derivatives in ordinary diffusion/wave equations with the
fractional derivatives. The FDWEs have been consid-
ered by the several investigators in recent years. Old-
ham and Spanier [1974] considered a fractional diffusion
equation that contained first-order derivative in space and
half-order derivative in time. Wyss [1986] and Schnei-
der and Wyss [1989] presented the solutions of the time-
fractional diffusion and wave equations in terms of Fox
functions. Giona, Cerbelli and Roman [1992] presented
fractional diffusion equations describing the relaxation
phenomena in complex viscoelastic materials. Giona and
Roman [1992a] presented fractional diffusion equations
for transport phenomena in random media. Giona and Ro-
man [1992b] and Roman and Giona [1992] used fractional
diffusion equations to describe one and three dimensional
cases of anomalous diffusions on fractals without external
forces. Their work extends the expression of Oldham and
Spanier [1972].
Mainardi ([1996a], [1996b], [1997]) used a Laplace

transform method to obtain fundamental solutions for
a FDWE and the solutions for fractional relaxation-
oscillations. Mainardi [1997] and Mainardi and Paradisi
[1997] showed that as the order of fractional derivative
in a FDWE increases from0 to 2, the process changes
from slow diffusion to classical diffusion to diffusion-
wave to classical wave processes. Agrawal [2000] pre-
sented fundamental solutions for an FDWE where the dif-
fusion equation contained a fourth order space derivative
and a fractional order time derivative. Zou, Ren and Qiu
[2004] considered a fractional diffusion equation of higher
dimension to describe anomalous diffusion processes in-
volving external force fields by using Giona and Roman’s
heuristic argument. Hilfer [2000] proposed the closed
form solution of a fractional diffusion problem in terms
of H-functions.
Agrawal ([2001], [2002]) used modal/integral
transform methods to find solutions of FDWEs defined



in finite domains. The method is general and can be used
to find closed form solutions to many problems in vibra-
tion analysis of fractional systems where modal/integral
transform methods could be applied. Given that vibration
of continuous system is a vast field, these papers open
multitude of possibilities and new problems in the field
of fractional diffusion-wave. Modal/integral transform
methods have recently been used to solve fractional gen-
eralization of Navier-Stokes equations in El-Shahed and
Salem [El-Shahed and Salem, 2004] and a time fractional
radial diffusion in a sphere [Povstenko, 2007]. Agrawal
[2003] presented stochastic analysis of FDWEs defined in
1-dimension. It should be pointed out that very little work
has been done in the area of stochastic analysis of frac-
tional order engineering systems. Since the approach pre-
sented here also uses modal/integral transform methods, it
could be extended to all fractional stochastic problems in
multi-dimensions where the transform methods could be
applied.
The exact solution of a fractional diffusion equation with

an absorbent term and a linear external force appears in
[Schot, et al, 2007]. Exact solutions of generalized nonlin-
ear fractional diffusion equations with external force and
absorption are presented in [Liang, et al 2007].
This brief review of formulations and methods for FD-

WEs is by no means complete. Other formulations, meth-
ods, and solutions could be found, among others, in [West,
Bologna and Grigolini 2003] and the references there in.
In this paper, we present a numerical scheme for an axis-

symmetric fractional diffusion-wave problem. We de-
fine the problem in terms of Riemann-Liouville fractional
derivatives and use modal/integral transform method pre-
sented in Agrawal ([2001], [2002]) to reduce the contin-
uum problem to a countable infinite degrees-of-freedom
problem for which solution could be found in closed form.
Problems similar to the one considered here have also
been solved using similar techniques in [El-Shahed and
Salem, 2004] and [Povstenko, 2007]. However, the for-
mulation here differs with Agrawal ([2001], [2002]),
[El-Shahed and Salem, 2004] and [Povstenko, 2007] in

two respects. First, Agrawal ([2001], [2002]) considers
one dimensional problems whereas this paper considers
an axis-symmetric problem. Second, Agrawal ([2001],
[2002]), [El-Shahed and Salem, 2004] and [Povstenko,
2007] find only closed form solutions, whereas this paper
also finds numerical solutions using Grünwald-Letnikov
approximation. In the sequel, we will present a formu-
lation for an axis-symmetric fractional optimal control
problem for which a closed form solutions could not be
found. Our numerical scheme used here will allow us to
find numerical solutions to the problem.
In the next section, we present the formulation and the

analytical solution to an axis-symmetric FDWE.

2 Axis-symmetric FDWE and its analytical
solution

In this section, we present an axis-symmetric FDWE
in terms of the Riemann-Liouville Fractional Derivative

(RLFD), and provide its analytical solution. However,
much of it can also be applied to formulations defined in
terms of other fractional derivatives. We begin with the
RLFD which is defined as [Podlubny, 1999],

aDα
t f(t) =

1

Γ(n − α)

(

d

dt

)n
t

∫

a

(t − τ)n−α−1f(τ)dτ

(1)
wheref(t) is a function,α, (n − 1 < α < n), is the
order of the derivative,t is the time variable, andn is an
integer. In caseα is an integer, the fractional derivative
is replaced with an ordinary derivative. Furthermore, iff
is dependent on two or more variables, then the ordinary
derivative in Eq. (1)is replaced with a partial derivative.
The axis-symmetric fractional diffusion-wave problem

can now be defined as follows: Find the response of the
system

∂αw

∂tα
= β

(

∂2w

∂r2
+

1

r

∂w

∂r

)

+ u (r, t) , (2)

subjected to the following boundary and initial conditions,

w (R, t) = 0, t > 0, (3)

and

w (r, 0) = ẇ (r, 0) = 0, (4)

where r is the radial space coordinate,β is a constant
which depends on the physical properties of the system,
u(r, t) is the external source term, andR is the bound-
ary of the domain ofr. The second condition in Eq. (4)
is considered only ifα > 1. In the case of heat trans-
fer, u(r, t) represents the rate of heat generation, and in
the case of membrane vibration, it represents the external
forcing function.
Using the method of separation of variables, it can be

demonstrated that the eigenfunctionsφj(r) for this prob-
lem are (see, e.g. [Kreyszig, 2006]),

φj(r) = J0

(

µj

r

R

)

, j = 1, 2, · · · ,∞ (5)

whereJ0(∗) is the zero-order Bessel function of the first
kind, andµj , j = 1, 2, · · · ,∞, are the positive roots of
the equation

J0(µ) = 0. (6)

To find the solution of the problem defined by Eqs. (2) to
(4), assume thatw(r, t) can be given as

w (r, t) =

∞
∑

j=1

qj (t)J0

(

µj

r

R

)

. (7)



Using Eqs. (2), (3), (4), and (7), and the orthogonality
conditions

1
∫

0

xJ0 (µix) J0 (µjx) dx =

{

0 , i 6= j
J2

1
(µj)
2 , i = j

. (8)

we obtain

dαqk (t)

dtα
= −β

(µk

R

)2

qk (t) + f̄k (t) (9)

and

qk(0) = q̇k(0) = 0 (10)

whereJ1(∗) is the first-order Bessel function of the first
kind, andf̄k(∗) is given as

f̄k (t) =
2

R2J2
1 (µk)

R
∫

0

rJ0

(

µk

r

R

)

u (r, t) dr. (11)

Once again, the second condition in Eq. (10) is considered
whenα > 1.
By applying the Laplace transform to Eq. (9), using Eq.

(10), and then taking inverse Laplace transform, we get

qk (t) =

t
∫

0

Qk (t − τ) f̄k (τ) dτ (12)

where

Qk (t) = L−1

{

1

sα + β
(

µk

R

)2

}

, (13)

is the fractional Green’s function, which can be written in
closed form as [Podlubny, 1999],

Qk (t) = tα−1Eα,α

(

−β
(µk

R

)2

tα
)

. (14)

HereL−1 is the inverse Laplace transform operator, and
Eα,β is the two-parameter Mittag-Leffler function (see
[Podlubny, 1999]).
Substituting Eq. (12) into Eq. (7), we obtain the closed

form solution of the axis-symmetric fractional diffusion
wave equation defined by Eqs. (2) to (4) as

w (r, t) =

∞
∑

k=1

J0

(

µk

r

R

)

t
∫

0

Qk (t − τ) f̄k (τ) dτ. (15)

Thus,w(r, t) can be obtained providedu(r, t) is known.
It will be shown in the second part of this paper that in the
case of fractional optimal controlu(r, t) is not knowna
priori, and it is solved along with other variables. For this
case, a numerical scheme is necessary.
In the next section, we present a numerical algorithm to

solve the fractional differential equations defined by Eqs.
(9) and (10).

3 Numerical Algorithm

The numerical algorithm presented here is based on an
algorithm given in [Podlubny, 1999]), and it relies on the
Grünwald-Letnikov approximation of the fractional deriv-
ative. For simplicity in the discussion to follow, we drop
the subscriptk from Eqs. (9) and (10), and rewrite them
as

dαq (t)

dtα
= −cq (t) + f (t) (16)

and

q(0) = q̇(0) = 0 (17)

wherec = β (µk/R)
2.

The algorithm can now be described as follows:

1. Divide the time interval into several subintervals of
equal sizeh (also called the step size).

2. Approximatedαq/dtα at nodei using the Gr̈unwald-
Letnikov formula as [Podlubny, 1999]),

dαq

dtα
=

1

hα

i
∑

j=0

w
(α)
j q(i−j), (18)

whereq(j) is the numerically computed value ofq at
nodej, andw

(α)
j are the coefficients defined as [Pod-

lubny, 1999]),

w
(α)
0 = 1; w

(α)
j =

(

1 −
α + 1

j

)

w
(α)
j−1, j = 1, · · ·

(19)
3. Approximate Eq. (16) at nodei, and solve forq(i) to

obtain

q(i) =
1

1 + chα
(hαf(ti)−

i−1
∑

j=1

w
(α)
j q(i−j)), i = iα, · · ·

(20)
whereiα = 1 if iα ≤ 1, and iα = 2 if iα > 1.
In caseα is greater than 1,q(1) is determined us-
ing Eq. (17) and taking linear approximation between
q(0) andq(1) (see, [Podlubny, 1999])).

4. Use Eq. (20) to findq(i) at all nodes.



Thus, the numerical solution of Eqs. (16) and (17) is ob-
tained. To obtain the solution of Eqs. (2) to (4), we re-
place∞ in Eq. (7) with an integerM (i.e. we truncate
the series), solve Eqs. (9) and (10) fork from 1 toM , and
substitute the results in Eq. (7). Numerical studies show
that only a smallM is sufficient to find accurate results.

4 Numerical Example

In this section, we present some simulation results for the
Diffusion-Wave problem defined by Eqs. (2) to (4) for
t > 0, 0 < α ≤ 2, r ∈ [0, R]. For simulation purpose,
we takeR = β = u(r, t) = 1, and varyM andh. We
computef̄k (t) using Eq. (11) and solve Eqs. (9) and (10)
for k = 1, 2, · · · ,M using the algorithm discussed in Sec.
3. Finally, we use Eq. (7) to find the response. We also
find the analytical solution using Eq. (15) for comparison
purpose. For computation purpose, this series is truncated
afterM terms. The results of this study are as follows:
Figures 1 and 2 show the analytical and numerical results

for w(r, t) for α = 1 andα = 2, respectively. In this
study, we taker = 0.5, M = 5, andh = 0.01. Figure
1 shows that the diffusion reaches a steady state in a very
short time, and Figure 2 shows the undamped vibrational
characteristics of the system. Note that in both cases, the
analytical and numerical results are very close.
Rest of the figures show numerical results for variousM ,

h, andα. Figure 3 showsw(r, t) at r = 0.5 for α = 0.5
andM = 5, 10, and 20. All three curves are very close
indicating that only few terms are necessary to compute
response of the system. Note that the diffusion process is
slow. Figure 4 showsw(r, t) atr = 0.5 for α = 1.0, M =
5 andh = 1, 0.1, 0.01, and 0.001. Note that the solutions
converge as the step size is reduced, which indicates that
the algorithm may be stable.
Figure 5 showsw(r, t) for α = 0.5, 0.7, 0.9 and 1, and

Figure 6 shows the same forα = 1.5, 1.7, 1.9 and 2. In
both cases, the following values are used:r = 0.5, M = 5
andh = 0.01. Both figures show that asα approaches an
integer value, the solution for the integer order system is
recovered. These two figures also show that asα changes
from 0.5 to 2, the response changes from sub-diffusion to
diffusion to diffusion-wave to wave solution.
Figures 7, 8 and 9 show the whole field responsew(r, t)

for α = 0.5, 1.5 and 2, respectively. For these simulations,
we tookM = 5 andh = 0.01. These figures also show
the changing behavior ofw(r, t) asα changes from 0.5 to
2. Note thatw(r, t) reaches a steady state forα = 0.5 and
1.5, but it continue to oscillate forα = 2.0. Further, in all
three cases,∂w/∂r is 0 atr = 0, as expected.

5 Conclusions

An axis-symmetric fractional diffusion-wave problem was
defined in terms of the Riemann-Liouville fractional
derivative, and a modal/integral transform method was
presented to reduce the continuum problem to a countable
infinite degrees-of-freedom problem. A Laplace trans-
form based technique was used to find closed form solu-
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Figure 1. Comparison of the analytical and the numerical solution of

w(r, t) for α = 1, r = 0.5, M = 5 andh = 0.01
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Figure 2. Comparison of the analytical and the numerical solution of

w(r, t) for α = 2, r = 0.5, M = 5 andh = 0.01
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Figure 3. The solution ofw(r, t) for α = 0.5, r = 0.5. and

M = 5, 10, 20

tions. The Gr̈unwald-Letnikov approximation was used to
develop an algorithm for numerical solution of the prob-
lem. Results show that both the analytical and the nu-
merical results agree well. As the time step size is re-
duced, the solutions converge, and only few terms in the
series are necessary to find a solution close to the exact
solution. The response of the system changes from sub-
diffusion to diffusion to diffusion-wave to wave solutions
asα changes from 0.5 to 2. The numerical algorithm de-
veloped here will allow us to find numerical solutions for
axis-symmetric fractional optimal control problems.
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Figure 5. The solution ofw(r, t) for r = 0.5, h = 0.01, M =
5. andα = 0.5, 0.7, 0.9, 1
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Figure 6. The solution ofw(r, t) for r = 0.5, h = 0.01, M =
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Figure 7. Three dimensional figure ofw(r, t) for α = 0.5, h =
0.01 andM = 5.
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Figure 8. Three dimensional figure ofw(r, t) for α = 1.5, h =
0.01 andM = 5.
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