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Abstract: This is part | of a two part paper on an In this paper we focus on an axis-symmetric Fractional
axis-symmetric fractional diffusion-wave problem. In Diffusion Wave Equations (FDWEs). The FDWESs are ob-
this part we focus on the response of the system sub-tained by replacing the integer order (time and/or space)
jected to external excitation. We define the problem in derivatives in ordinary diffusion/wave equations with the
terms of Riemann-Liouville fractional derivatives and use fractional derivatives. The FDWEs have been consid-
modal analysis approach to reduce the continuum prob-ered by the several investigators in recent years. Old-
lem to a countable infinite degrees-of-freedom problem ham and Spanier [1974] considered a fractional diffusion
for which solution could be found in closed form. Here equation that contained first-order derivative in space and
we use Gilnwald-Letnikov approximation to find a nu- half-order derivative in time. Wyss [1986] and Schnei-
merical solution to the problem. This will allow us to der and Wyss [1989] presented the solutions of the time-
solve axis-symmetric fractional optimal control problems fractional diffusion and wave equations in terms of Fox
which could not be solved in closed form. We validate functions. Giona, Cerbelli and Roman [1992] presented
the scheme by comparing the numerical results with the fractional diffusion equations describing the relaxation
analytical solutions. The formulation and the approach phenomena in complex viscoelastic materials. Giona and
presented here extends our earlier work on fractional dif- Roman [1992a] presented fractional diffusion equations
fusion in 2-dimension to axis symmetric case. for transport phenomena in random media. Giona and Ro-

man [1992b] and Roman and Giona [1992] used fractional
diffusion equations to describe one and three dimensional

Key words cases of anomalous diffusions on fractals without external

forces. Their work extends the expression of Oldham and
Fractional Calculus, Fractional derivatives, Fractional gpanijer [1972].
diffusion-wave equation, Axis symmetric, diffusion-wave  painardi ([1996a], [1996b], [1997]) used a Laplace
equation, Giinwald-Letnikov scheme, Bessel function.  transform method to obtain fundamental solutions for
a FDWE and the solutions for fractional relaxation-
oscillations. Mainardi [1997] and Mainardi and Paradisi
[1997] showed that as the order of fractional derivative
in a FDWE increases from to 2, the process changes
Fractional derivatives are generalizations of ordinary from slow diffusion to classical diffusion to diffusion-
differentiations and integrations to non-integer orders. wave to classical wave processes. Agrawal [2000] pre-
Some of the definitions of fractional derivatives pro- sented fundamental solutions for an FDWE where the dif-
posed include Riemann-Liouville, Gmwald-Letnikov, fusion equation contained a fourth order space derivative
Weyl, Caputo, Riesz and Marchaud derivatives ([Old- and a fractional order time derivative. Zou, Ren and Qiu
ham and Spanier, 1974], MillerRoss93, [Samko, Kil- [2004] considered a fractional diffusion equation of highe
bas and Marichev, 1993], [Podlubny, 1999]). Fractional dimension to describe anomalous diffusion processes in-
derivatives arise in many physical problems, for exam- volving external force fields by using Giona and Roman'’s
ple frequency dependent damping behavior of materials,heuristic argument. Hilfer [2000] proposed the closed
relaxation functions for viscoelastic materials, frantib form solution of a fractional diffusion problem in terms
PI*D* control of dynamical systems, motion of a plate of H-functions.
in a Newtonian fluid, and phenomena in electromagnetics Agrawal ([2001], [2002]) used modal/integral
and acoustics ([Podlubny, 1999]). transform methods to find solutions of FDWEs defined

1 Introduction



in finite domains. The method is general and can be used(RLFD), and provide its analytical solution. However,
to find closed form solutions to many problems in vibra- much of it can also be applied to formulations defined in
tion analysis of fractional systems where modal/integral terms of other fractional derivatives. We begin with the
transform methods could be applied. Given that vibration RLFD which is defined as [Podlubny, 1999],

of continuous system is a vast field, these papers open

multitude of possibilities and new problems in the field ot

of fractional diffusion-wave. Modal/integral transform DEF(t) = 41 (d) /(t — T)n_a_lf(T)dT
methods have recently been used to solve fractional gen- I(n—a) \dt

eralization of Navier-Stokes equations in EI-Shahed and ¢ (1)

Salem [EI-Shahed and Salem, 2004] and a time fractionalwheref(t) is a function,a, (n — 1 < a < n), is the
radial diffusion in a sphere [Povstenko, 2007]. Agrawal qrder of the derivativet is the time variable, and is an
[2003] presented stochastic analysis of FDWEs defined injnteger. In caser is an integer, the fractional derivative
1-dimension. It should be pointed out that very little work ;¢ replaced with an ordinary derivative. Furthermoref. if

has been done in the area of stochastic analysis of frac4s gependent on two or more variables, then the ordinary
tional order engineering systems. Since the approach preyerivative in Eq. (1)is replaced with a partial derivative.
sented here also uses modal/integral transform methods, it The axis-symmetric fractional diffusion-wave problem
could be extended to all fractional stochastic problems in can now be defined as follows: Find the response of the
multi-dimensions where the transform methods could be gystem
applied.

The exact solution of a fractional diffusion equation with

an absorbent term and a linear external force appears in
[Schot, et al, 2007]. Exact solutions of generalized noenlin

ear fractional diffusion equations with external force and

0w 0w 10w
ot :ﬁ<8r2+r8r>+u(r’t)’ (2)

absorption are presented in [Liang, et al 2007]. Subjected to the fO”OWing boundary and initial conditipns
This brief review of formulations and methods for FD-
WEs is by no means complete. Other formulations, meth- w(R,t) =0, t>0, (3)

ods, and solutions could be found, among others, in [West,
Bologna and Grigolini 2003] and the references there in. and
In this paper, we present a numerical scheme for an axis-
symmetric fractional diffusion-wave problem. We de- )
fine the problem in terms of Riemann-Liouville fractional w(r,0) =w(r,0) =0, (4)
derivatives and use modal/integral transform method pre-
sented in Agrawal ([2001], [2002]) to reduce the contin- wherer is the radial space coordinatg, is a constant
uum problem to a countable infinite degrees-of-freedom which depends on the physical properties of the system,
problem for which solution could be found in closed form. wu(r,t) is the external source term, adtlis the bound-
Problems similar to the one considered here have alsoary of the domain of. The second condition in Eq. (4)
been solved using similar techniques in [EI-Shahed andis considered only itx > 1. In the case of heat trans-
Salem, 2004] and [Povstenko, 2007]. However, the for- fer, u(r,t) represents the rate of heat generation, and in
mulation here differs with Agrawal ([2001], [2002]), the case of membrane vibration, it represents the external
[El-Shahed and Salem, 2004] and [Povstenko, 2007] in forcing function.
two respects. First, Agrawal ([2001], [2002]) considers Using the method of separation of variables, it can be
one dimensional problems whereas this paper considerglemonstrated that the eigenfunctiafgr) for this prob-
an axis-symmetric problem. Second, Agrawal ([2001], lem are (see, e.g. [Kreyszig, 2006]),
[2002]), [EI-Shahed and Salem, 2004] and [Povstenko,
2007] find only closed form solutions, whereas this paper
also finds numerical solutions using itbwald-Letnikov
approximation. In the sequel, we will present a formu-
lation for an axis-symmetric fractional optimal control where.Jy(*) is the zero-order Bessel function of the first
problem for which a closed form solutions could not be kind, andy;, j = 1,2,---, 0o, are the positive roots of
found. Our numerical scheme used here will allow us to the equation
find numerical solutions to the problem.
In the next section, we present the formulation and the Jol(p) = 0. 6)
analytical solution to an axis-symmetric FDWE.

r

6i(r) =Jo (1migs) s J=1200  (9)

) ) . ) To find the solution of the problem defined by Egs. (2) to
2 Axis-symmetric FDWE and its analytical (4), assume that(r, ) can be given as

solution

In this section, we present an axis-symmetric FDWE w(r.t) = = ) J. ( ﬁ) 7
in terms of the Riemann-Liouville Fractional Derivative (r8) ;qj( ) Jo "R )



Using Egs. (2), (3), (4), and (7), and the orthogonality
conditions

1

0 L, 1F£ ]
/xJO x) Jo (1 )da:z{le(M) 17_&] . (8)
b 2 o=
we obtain
d* 2 -
G R CES AU
and
qx(0) = 4x(0) =0 (10)

WhereJl(f) is the first-order Bessel function of the first
kind, andf (x) is given as

R

= 2
fr(t) = W/TJO (Hk:%) w(r,t)dr. (11)
0

Once again, the second condition in Eq. (10) is considered

whena > 1.
By applying the Laplace transform to Eq. (9), using Eq.
(10), and then taking inverse Laplace transform, we get

t) = /Qk (t—7) fr (7)dr (12)
0

where

Qu(t)y="L"" { (13)

o)
s (%))

is the fractional Green’s function, which can be written in
closed form as [Podlubny, 1999],

Qn(t) =t Ea (—ﬁ (’g)%) .14

Here L~! is the inverse Laplace transform operator, and
E, s is the two-parameter Mittag-Leffler function (see
[Podlubny, 1999]).

Substituting Eq. (12) into Eq. (7), we obtain the closed
form solution of the axis-symmetric fractional diffusion
wave equation defined by Egs. (2) to (4) as

w (r,t) = kZ:lJO (ukﬁ) { Qn (t —7) fi (1) dr. (15)

Thus,w(r,t) can be obtained provided(r, t) is known.
It will be shown in the second part of this paper that in the
case of fractional optimal contral(r, ¢) is not knowna
priori, and it is solved along with other variables. For this
case, a numerical scheme is necessary.

In the next section, we present a numerical algorithm to
solve the fractional differential equations defined by Egs.
(9) and (10).

3 Numerical Algorithm

The numerical algorithm presented here is based on an
algorithm given in [Podlubny, 1999]), and it relies on the
Grunwald-Letnikov approximation of the fractional deriv-
ative. For simplicity in the discussion to follow, we drop
the subscripk from Eqgs. (9) and (10), and rewrite them
as

d*q (t)

o= —cq () + £ (1) (16)
and

q(0) = 4(0) =0 (7
wherec = 3 (u/R).

The algorithm can now be described as follows:

1. Divide the time interval into several subintervals of
equal sizeh (also called the step size).

2. Approximated®q/dt* at nodei using the Giinwald-
Letnikov formula as [Podlubny, 1999]),

haZ g, (18)

dto‘

whereq?) is the numerically computed value gfat

nodej, andw(“) are the coefficients defined as [Pod-
lubny, 1999])

(o7 (0% 1 « .
wi? =15 wi™ = (1—a;r )wj(-)hjzl,
(19)
3. Approximate Eq. (16) at nodeand solve fog® to
obtain
1 S (@)
(1) — _ A=Y 5= ...
¢ 71—|—ch<¥( J;wy ¢, i = a,

(20)
wherei, = 1if i, < 1, andi, = 2 if 7, > 1.
In casea is greater than 1¢(") is determined us-
ing Eq. (17) and taking linear approximation between
¢ andq (see, [Podlubny, 1999])).
4. Use Eq. (20) to fing® at all nodes.



Thus, the numerical solution of Egs. (16) and (17) is ob-
tained. To obtain the solution of Egs. (2) to (4), we re-

placecc in Eg. (7) with an integeM (i.e. we truncate 016l
the series), solve Egs. (9) and (10) fofrom 1 to M, and o1al
substitute the results in Eq. (7). Numerical studies show 012}

that only a smallM/ is sufficient to find accurate results.

w(r,t)
<)

4 Numerical Example ooer
0.04
analytical solution
In this section, we present some simulation results for the 0oz numerical solution
Diffusion-Wave problem defined by Eqs. (2) to (4) for % 05 1 15 2

t (time)

t>0,0<a<27re]|0,R]. For simulation purpose,
we takeR = 8 = u(r, t) =1, and varyM andh. We Figure 1. Comparison of the analytical and the numerical miutf
computef;, (¢) using Eq. (11) and solve Egs. (9) and (10) w(r,t)fora =1,7 = 0.5, M = 5andh = 0.01

fork =1,2,--- , M using the algorithm discussed in Sec.
3. Finally, we use Eq. (7) to find the response. We also
find the analytical solution using Eq. (15) for comparison
purpose. For computation purpose, this series is truncated
after M terms. The results of this study are as follows:

Figures 1 and 2 show the analytical and numerical results
for w(r,t) for « = 1 anda = 2, respectively. In this
study, we take = 0.5, M = 5, andh = 0.01. Figure
1 shows that the diffusion reaches a steady state in a very
short time, and Figure 2 shows the undamped vibrational
characteristics of the system. Note that in both cases, the
analytical and numerical results are very close. °

Rest of the figures show numerical results for varidfls 095 1 2 B . 5
h, anda. Figure 3 showsu(r,t) atr = 0.5 for a = 0.5 e
and M = 5, 10, and 20. All three curves are very close Figure 2. Comparison of the analytical and the numerical soiutf
indicating that only few terms are necessary to compute w(r,t) fora = 2,7 = 0.5, M = 5 andh = 0.01
response of the system. Note that the diffusion process is
slow. Figure 4 shows)(r, t) atr = 0.5fora = 1.0, M =
5andh =1, 0.1, 0.01, and 0.001. Note that the solutions
converge as the step size is reduced, which indicates that
the algorithm may be stable.

Figure 5 showsu(r,t) for o = 0.5, 0.7, 0.9 and 1, and
Figure 6 shows the same far= 1.5, 1.7, 1.9 and 2. In
both cases, the following values are useéd: 0.5, M = 5
andh = 0.01. Both figures show that as approaches an
integer value, the solution for the integer order system is
recovered. These two figures also show that akanges
from 0.5 to 2, the response changes from sub-diffusion to
diffusion to diffusion-wave to wave solution. 8 oos o1 o1 o0z oz 03 o0m os

Figures 7, 8 and 9 show the whole field respomse, t) e
fora = 0.5, 1.5 and 2, respectively. For these simulations, Figure 3. The solution ofv(r,t) for « = 0.5, 7 = 0.5. and
we took M = 5 andh = 0.01. These figures also show M =5, 10,20
the changing behavior @#(r, t) asa changes from 0.5 to
2. Note thatw(r, t) reaches a steady state for= 0.5 and

w(r,t)

— — — analytical solution | |
numerical solution

w(r,t)

1.5, but it continue to oscillate far = 2.0. Further,inall  tjons. The Giinwald-Letnikov approximation was used to

three casesjw/0r is 0 atr = 0, as expected. develop an algorithm for numerical solution of the prob-
lem. Results show that both the analytical and the nu-

5 Conclusions merical results agree well. As the time step size is re-

duced, the solutions converge, and only few terms in the
An axis-symmetric fractional diffusion-wave problemwas series are necessary to find a solution close to the exact
defined in terms of the Riemann-Liouville fractional solution. The response of the system changes from sub-
derivative, and a modal/integral transform method was diffusion to diffusion to diffusion-wave to wave solutions
presented to reduce the continuum problem to a countableasa changes from 0.5 to 2. The numerical algorithm de-
infinite degrees-of-freedom problem. A Laplace trans- veloped here will allow us to find numerical solutions for
form based technique was used to find closed form solu-axis-symmetric fractional optimal control problems.
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Figure 4. The solution ofv(r,t) forae = 1,7 = 0.5, M = 5.
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Figure 5. The solution ofv(r, t) forr = 0.5, h = 0.01, M =

5.anda =0.5,0.7,0.9, 1

w(r,t)

a=2

0 1 2 B s 5
t (time)

Figure 6. The solution ofu(r, t) forr = 0.5, h = 0.01, M =

5.anda =15,1.7,1.9,2

t (time) 0 o

Figure 7. Three dimensional figure af(r,t) for « = 0.5, h =
0.0l andM = 5.

r (radius) o o t (time)

Figure 8. Three dimensional figure af(r,t) for« = 1.5, h =
0.0l andM = 5.

0.6

0.4
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Figure 9. Three dimensional figure @f(r,t) fora = 2, h =
0.0l andM = 5.
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