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Abstract: The paper is devoted to design and experimental testing of adaptive algorithms
for identification of the angular motion model parameters for “LAAS Helicopter Benchmark”.
The simplified model describes the isolated pitch motion and interrelated elevation and travel
motions of the “Helicopter”. The adaptive identification algorithms are proposed, and the
experimental results are presented. Laboratory experiments clarify the properties of the adaptive
identification in the real-world conditions. The identification results may be used to design the
3DOF control laws for the “Helicopter” both for adaptive and non-adaptive cases.
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1. INTRODUCTION

Various computer-controlled equipment units are used for
education and research as benchmarks for testing new
control algorithms under real world conditions, such as
Schmid pendulum Schmid [1999], Furuta pendulum Fu-
ruta et al. [1994], pendubot Spong and Block [1996], Cal-
tech’s ducted fan Teel et al. [1997], different laboratory
helicopters Apkarian [1999], Tanaka et al. [2004], Kutay
et al. [2005], etc. One of impressive laboratory setups
is a laboratory-scale bench-top three degrees of freedom
(DOF) helicopter produced by Quanser Consulting Inc., 2

This setup was modified under demand of LAAS-CNRS 3

to form the “LAAS Helicopter Benchmark”, allowing test-
ing 3DOF flight control algorithms under time-varying
conditions.

It is well known, that an important aspect in any control
design is the effect of parametric uncertainty and unmod-
eled dynamics. To fit the demands on control quality under
conditions of uncertainty, the robust and adaptive con-
trol methods are being developed. Control strategies for
uncertain systems include passive and active approaches.
The passive approach is to build the system and a time-
invariant controller such that the closed-loop has a re-
quired behavior guaranteed for all the possible values of

1 The work was done in the framework of CNRS–RAS cooperative
research program “Robust and adaptive control of complex systems:
Theory and applications” (project No 19134). Partly supported by
the Russian Foundation for Basic Research (projects RFBR 05-01-
00869, 06-08-01386) and Scientific Program of RAS No 22 (project
1.8).
2 http://www.quanser.com/choice.asp
3 LAAS-CNRS, http://www.laas.fr

parameters and all estimated perturbations Bliman [2004],
Peaucelle et al. [2000]. These methods have necessarily
some limitations as for example when the behavior of
the system has sudden large variations in its parameters.
For such cases, adaptation of the control law must be
required, which could mean modification of the controller
parameters as well as a global reconfiguration chosen out
of a pre-defined set of computed values. Two approaches
are known for adaptive control: the direct adaptive control,
assuming presence of the reference model (explicitly or im-
plicitly) Landau [1979], Fradkov [1976], Gawthrop [1987],
Fradkov [1990], Fradkov et al. [1999], Dzul et al. [2004],
Kutay et al. [2005], Andrievskii and Fradkov [2006] and
the indirect adaptive control, based on real-time identifi-
cation of unknown plant parameters Lion [1967], Lindorff
and Carrol [1973], Narendra and Kudva [1974], Gawthrop
[1987], Andrievsky et al. [1989], Fradkov et al. [1999], Chen
and Chen [2002].

The experimental results on application Implicit Refer-
ence Model (IRM) adaptive control technique for the
“LAAS Helicopter Benchmark” 4 were recently reported
in Andrievsky et al. [2005b,a, 2007], Fradkov et al. [2007].
The present paper is devoted to adaptive identification
approach. The aim of the paper is experimental testing
the adaptive identification algorithms for “Helicopter”.
The advantage of the identification-based methods lies
in opportunity to optimize control based on a posteriori
information about plant model parameters. The drawback
of adaptive identification follows from difficulties of param-
eter identification in the closed-loop and appearance of es-
timation errors, caused by unmodeled plant dynamics and

4 Hereafter the “Helicopter”.



sensors imperfection. Laboratory experiments may clarify
the properties of identification algorithms for the real-
world conditions. Some preliminaries results are presented
in Peaucelle et al. [2007].

The paper is organized as follows. The “Helicopter” design
and dynamical model are briefly presented in Sec. 2. Sec. 3
is devoted to “Helicopter” parameter identification. The
adaptive identification algorithms for simplified 3D motion
model are described and the results of experiments are
presented. Concluding remarks and future work intensions
are given in Sec. 4.

2. MODELING THE “HELICOPTER” DYNAMICS

2.1 LAAS Helicopter benchmark

The 3DOF helicopter setup is manufactured by Quanser
Consulting Inc., Apkarian [1999]. The MAC Group of
LAAS-CNRS uses its improved version as a benchmark
for implementation and testing robust control laws. The
“Helicopter” consists of a base on which a long arm is
mounted. The arm carries the helicopter body on one end
and a counterweight on the other end. The arm can tilt
on an elevation axis as well as swivel on a vertical (travel)
axis. Quadrature optical encoders mounted on these axes
measure the elevation and travel of the arm. The helicopter
body, which is mounted at the end of the arm, is free to
pitch about the pitch axis. The pitch angle is measured
via a third encoder. Two motors with propellers mounted
on the helicopter body can generate a force proportional
to the voltage applied to them. The force, generated by
the propellers, causes the helicopter body to lift off the
ground and/or to rotate about the pitch axis. All electrical
signals to and from the arm are transmitted via a slipping
with eight contacts. The system is also equipped with a
motorized lead screw that can drive a mass along the main
arm in order to impose known controllable disturbances
(the so-called Active Disturbance Option, ADO).

2.2 Nomenclature

Following notation is used through the paper (see Fig-
ure 1): θ(t) – pitch angle 1 ; ε(t) – elevation angle; λ(t) –
travel angle; vf (t), vr(t) – control voltages of the “front”
(conditionally) and the “rear” motors; u(t) – pitch torque
command signal w(t) – normal force command signal (used
for elevation/travel control); ff (t), fr(t) – tractive forces
of the “front” and “rear” propellers.

These forces are produced respectively by the control
voltages vf (t) and vr(t), applied to the front and rear
motors. The motor control voltages have saturation level
5 V on magnitude.

2.3 Simplifying assumptions

Following simplifications are made to build the model of
the “Helicopter” motion: bending of structural compo-
nents is neglected; the gyroscopic torques, developed by
1 In the present paper the manufacturer’s system of notation
Apkarian [1999] is used: the turning angle of the“Helicopter body”
about the long arm is called the pitch angle θ; the pitch angle of the
paper Kutay et al. [2005] is known here as the elevation angle ε.

Fig. 1. Lay-out of the “Helicopter”.

motor/propeller pairs are neglected; dependence of mo-
tor/propeller force gain on the “Helicopter” airspeed is
neglected; influence of aerodynamical pressure forces on
the “Helicopter” body is neglected; dry friction in the
pivots is neglected.

2.4 General equations

Under the aforementioned assumptions, dynamics of the
3DOF motion of “Helicopter” in a general form may be
described by the following equations:

−̇→
K +−→ω ×

−→
K =

−→
M,

−→
K = J−→ω ,

ωx = θ̇, ωy =
λ̇

cos ε
− θ̇ tan ε, ωz = ε̇

(1)

where
−→
K is a kinetic moment, J is the inertia tensor,

−→
M is

the sum of the momentum of the propeller torques, the
gravitational forces (bar plus the two motors) and the
viscous friction torque. The vector ω is expressed in the
mobile coordinate system of the Helicopter.

2.5 Simplified model

The model (1) describes nonlinear system with consid-
erable cross coupling between variables. At the stage of
control law design, it is reasonable to make further sim-
plifying assumptions. Firstly, the geometry of the system
shows us that the inertia tensor may reasonably be chosen
diagonal. Secondly, taking into account that the inertia
of this helicopter body is smaller than this of the overall
mechanical system (body + arm), the pitch dynamics is
faster than the dynamics of elevation and travel angles
and we may consider the pitch motion independently of
the others. Thirdly, we study the machine under specific
experimental conditions, which means only with an el-
evation angle which belongs to the interval (±15o). So
it’s not varying so much around the equilibrium and in
our studies, we can approach the trigonometric functions
(sin ε ≈ ε, cos ε ≈ 1 and tan ε ≈ ε). In this way, the
following simplified model is obtained:

θ̈ = −aωx
mx
θ̇ − aθ

mx
sin (θ(t)− θ0)

+kf
mx

(ff − fr),
ε̈ = −aωz

mz
ε̇− aε

mz
ε(t)− a1

mz
− aλθ

mz
θ̇λ̇

+kf
mz

(ff + fr) cos θ,
λ̈ = −aωy

my
λ̇+ kf

my
(ff + fr) sin θ.

(2)



Parameters ai
j and ki

j in (2) are to be identified. Adaptive
identification algorithm is used for this purpose in the
following. The constant θ0 stands for pitch balance angle
and a1

mz
is due to elevation balance angle. The term with

θ̇λ̇ describes the coupling between axes. We can control
just the pitch or just the elevation but not the travel.
Indeed, travel is possible only when the machine is moving
around the three axes. So we have dependencies between
the three different axes.

3. ADAPTIVE IDENTIFICATION OF THE
“HELICOPTER” MODEL PARAMETERS

3.1 General form of the identification algorithm

The least-squares-like plant estimator is used for on-
line identification of the “Helicopter” parameters. The
identification algorithm uses the measurement of the in-
put/output signals only. To avoid measuring of the pitch
angular rate and time derivatives of higher order, state
filters are introduced.

The identification algorithm in a general form is described
in Gawthrop [1987], Andrievsky et al. [1996], Fradkov and
Andrievsky [2005]. The essentials of the algorithm are
briefly presented below.

Consider the following LTI SISO plant model:

y(n)(t) + a1y
(n−1)(t) + · · ·+ any(t)

= b0u
(m)(t) + b1u

(m−1)(t) + · · ·+ bmu(t),
(3)

where a1, . . . an, b0, . . . , bm are unknown plant parameters
(index n means the nth time derivative of the signal).
Equation (3) may be rewritten as:

y(n)(t) = φT (t)Ω∗, (4)
where the regressor vector φ∈ Rn+m+1 and the vector of
parameters Ω∗∈ Rn+m+1 are defined by

φ =
[
y(n−1) . . . ẏ y u(m) . . . u

]T
,

Ω∗ = [−a1 −a2 . . . −an b0 b1 . . . bm ]T .

Introducing the filtered signals ỹ(t) and φ̃(t) satisfying
equations D(p)ỹ(n)(t) = y(n)(t), D(p)φ̃(t) = φ(t), where
D(p) = pn + d1p

n−1 + · · · + dn is an arbitrary Hurwitz
polynomial of p ∼ d/dt, one gets from (4) the relation:
ỹ(n) = φ̃T (t)Ω∗. The signals ỹ(t), φ̃(t) are outputs of the
following state filters

ξ̇ = Adξ + bdy(t), ψ̇ = Adψ + bdu(t), (5)
where ξ(t), ψ(t)∈ Rn; pair (Ad, bd) has a regular canonical
form, det(sIn − Ad) = D(s). Notice, that both signals
ξ(t) and ψ(t) can be implemented without measurement
of time derivatives. It is easy to see that

φ̃ = [ ξn . . . ξ2 ξ1 ψm+1 . . . ψ1 ]T ,

ỹ(n) = dny(t)−
n∑

i=1

dn−i+1ξi.

In the sequel, the variable ỹ(n) is denoted as ξ̃.

Introduce the vector of estimates Ω(t)∈ Rn+m+1 as Ω =[
−â1 −â2 . . . −ân b̂0 . . . b̂m

]T
, where âi(t), b̂j(t) are

time-varying estimates of the corresponding parameters

ai, bj of the plant model. The system model (3) holds for
Ω = Ω(t) if

Ω̇(t) = 0, ξ̃(t) = φ̃T (t)Ω(t), Ω(0) = Ω∗. (6)
We can apply now the Kalman filtering technique to the
plant model (6). It leads to the following identification
algorithm:

Ω̇(t) = −Γ(t)φ̃(t)σ(t),
σ(t) = φ̃T (t)Ω(t)− ξ̃(t),
Γ̇(t) = −Γ(t)φ̃(t)φ̃T (t)Γ(t) + αΓ(t),

(7)

where Γ(t) is the gain matrix. Initial value Γ(0) = ΓT (0) >
0 is the algorithm parameter and Ω(0) an initial guess
on the system parameters. The variable σ(t) may be
considered as a measure of compliance with (4), i.e. as an
adaptation error. This Kalman method has already been
used to identify the parameters of a system Demircioglu
and Yavuzyilmaz [2002]. They add a condition on the
coefficient α : 0 ≤ αh < 0.05 where h is the sample interval.

It is well known that the so-called persistent excitation
(PE) condition is important ensuring convergence of the
parameter estimates to their true values Narendra and
Annaswamy [1989], Fradkov [1990], Loŕıa et al. [2005].
Fulfillment of this condition is an open issue for the closed-
loop systems, because the input signal is produced by the
controller as a function on current state of the plant. In
the present work, the parameter identification procedure
is carried out at the stage of controller design and the
system happens to be open-loop stable, although highly
sensible to perturbations. The open-loop system is used
and the input signal is chosen to assure fulfillment of the
PE condition Loŕıa et al. [2005].

3.2 Adaptive parameter identification of the pitch model

Algorithm for pitch model identification. Assuming that
the rotation rates about the travel and elevation axes are
relatively small, consider the following simplified model of
the pitch dynamics:

θ̈ + aωx
mx
θ̇ + aθ

mx
sin

(
θ(t)− θ0

)
= kf

mx
(ff − fr), (8)

Each force is assumed to be proportional to the rotation
speed of the corresponding motor 1 . Neglecting the small
time lags, residing in the air-blast speed of the fans and the
motor electric circuits, write down the following equation
for the tractive forces fi(t):

Tmḟi(t) + fi(t) = kv
fvi(t), i ∈ {f, r}, (9)

where vi(t) is the control voltage, applied to the corre-
sponding motor; Tm is an electric motor time constant; kv

f

is the gain parameter.

Parameters aωx
m , aθ

m, kv
f , kf

mx
of the system (8) depend on

the design features of the setup, including characteristics of
interaction between the propeller blades with ambient air,
and assumed to be subjected the identification procedure.
The approximate value of the electric motor parameter
Tm ≈ 0.08 s is taken from the “Helicopter” User’s Guide,
presented by the manufacturer.

The method described above is applied to designing the
parameter identification algorithm for the plant model (8).
1 More accurate model represents asymmetry of the propeller
tractive force from sign of rotation.



Introduce the overall gain kv
m as kv

m = kv
fk

f
mx

. Then the
plant equations may be rewritten in the form

θ̈ + aωx
m θ̇ + aθ

m sin
(
θ − θ0

)
= kv

mµθ(t),
Tmν̇i(t) + νi(t) = vi(t), i ∈ {f, r}. (10)

where µθ(t) = νf (t) − νr(t). The signal µθ(t) is conside-
red as a new control action, applied to the plant (10).
This signal may be reproduced as the difference between
outputs of the low-pass filters with states νi(t).

The “bias” parameter θ0 was found as the balance angle
of pitch for vf (t) = vr(t) ≡ 0. This parameter is estimated
outside the identification algorithm.

The theory of the identification algorithm has been ex-
plained for SISO systems because it is easier to understand
but we can use it for MISO systems as well. Indeed, the
system is a non linear SISO system and can be transformed
into a linear MISO system. To apply the aforementioned
procedure, define the variable s(t) = sin(θ − θ0) and
consider s(t) as an additional input signal. Then introduce
the vectors Ω∗ = [−aωx

m − aθ
m kv

m]T ∈ R3 and Ω(t) =
[−âωx

m (t) − âθ
m(t) k̂v

m(t)]T ∈ R3, where âωx
m (t), âθ

m(t), k̂v
m(t)

are estimates of the corresponding parameters of the plant
model (10).

The state filters (5) for the considered case are given by
the following equations:


ẋ1(t) = Adx1(t) + bdθ(t)
ẋ2(t) = Adx2(t) + bds(t)
ẋ3(t) = Adx3(t) + bdµθ(t)

(11)

Where Ad =
[

0 1
−ω2

f −2ωfρ

]
, bd =

[
0
ω2

f

]
And

φ̃ =

 θ̇f (t)
sf (t)
µθf

(t)

 =

[0 1]x1(t)
[1 0]x2(t)
[1 0]x3(t)


ξ̃ =

[
−ω2

f −2ωfρ
]
x1(t) + ωfθ(t)

where parameters ωf and ρ are the pass band and the
damping coefficient of the filters (11). The signals φ̃(t),
ξ̃(t) are used in the identification algorithm (7). For the
considered case, the gain Γ(t) is (3× 3)-matrix.

Experimental results for pitch model identification. The
identification algorithm (7), (2) was implemented on-line
in the Matlab/ Simulink and WinCon software environ-
ment to obtain the parameter estimates for the “Heli-
copter” pitch model. The special exciting signal satisfying
the PE condition, was applied to the “Helicopter” control
input. The following parameters of the identification al-
gorithm (7), (2) were taken: Γ(0) = 103 · I3×3, α= 0.001,
ωf = 1 s−1, ρ = 0.7. For the coefficient α, we apply the
condition given by Demircioglu and Yavuzyilmaz [2002]
and we find with our sample time 0 ≤ α < 5. But, if
α is too important, slow convergence and oscillations are
observed. We choose α = 0.001 because it is the most
important value with fast convergence. The bias angle
θ0 was measured at the quiescent state, θ0 = −7.8o. The
motor time constant Tm in (10) is Tm = 0.08 s. For the

coefficients Γ(0) and Ω(0), we made experiments for several
values (see Figure 2). The plots show that convergence
time is increased for some choices of Γ(0) but identified
parameters are exactly the same.

Fig. 2. Ω(t) histories respectively for different values of
Ω(0) and Γ(0)

The experimentations are done for different disturbance
inputs. We decided to create a noise which is formed by
one principal frequency, a square function and in order
to be excited by more frequencies, we added a chirp
signal which frequencies are chosen to be close to expected
disturbance and control signals. Two different experiments
are reported. The first disturbance input is formed by a
principal square signal (period : 20 seconds / variations
between 0.25 and 1 Volts) and a secondary chirp signal
constructed periodically (from 2 Hz to 0.5 Hz / repeated
every 10 seconds / variations between -0.2 and 0.2 Volts)
(see Figure 3). For the second experiment, the difference is
that the principal signal has a period of 40 seconds and the
secondary is repeated every 20 seconds. Each experiment
is done 12 times with the same conditions and give the
ranges for parameters of Table 1.

Fig. 3. First experimental signal

With these results, we can easily understand that the
identified values of the parameters depend on the input
signal but they are really close. For an uncertainty model,
one can take a mean value of these identified values with
20% uncertainties. The parameter identification does not



1st 2nd
kv

m [0.289;0.298] [0.257;0.269]
aθ

m [0.658;0.668] [0.595;0.623]
aωx

m [0.059;0.062] [0.064;0.068]

Table 1. Parameters of the pitch motion

depend on initial conditions like Ω(0) or Γ(0) but it still
depends on the input disturbance signal.

Classic control of the pitch axis In order to understand
how close is our modeling to the real system, experimenta-
tion is done in closed loop. For this, a PID control is imple-
mented. It is tuned to check time response and overshoot
specifications. We chose one PID and with it, comparison
is lead between the real system and the modeling. The
selected PID is such that :

Vf − Vb = 8.35(θ − θref ) + 4.25

t∫
0

(θ − θref )dt+ 8.76θ̇

In order to test our PID compensator, one step input is
applied to the system. Figure 4 shows that the behavior of
the modeled system is really close to the real system. The
error is relatively small knowing the numerous assump-
tions that were made at the beginning.

Fig. 4. Comparison between real and modeled systems

3.3 Adaptive parameter identification of the elevation and
travel model

Parameters identification The travel and elevation axes
are identified simultaneously. The model equations are :

ε̈ = −aωz
mz
ε̇− aε

mz
ε(t)− a1

mz
− aλθ

mz
θ̇λ̇

+kv
mz
µε(t) cos θ(t),

λ̈ = −aωy
my
λ̇+ kv

my
µλ(t) sin θ(t).

(12)

where µε(t) = µλ(t) is the sum of outputs of the low-pass
filters (10), µε(t) = νf (t) + νr(t).

With the same method as for pitch motion, one takes :

φε(t) =


ε̇(t)
ε(t)
1
θ̇λ̇

µε cos(θ(t))

 , Ωε(t) =


−aωz

mz

−aε
mz

−a1
mz

−aλθ
mz

kv
mz



Pitch Elevation Travel

aωx
mx = 0.060 aωz

mz = 0.032 a
ωy
my = 0.114

aθ
mx

= 0.664 aε
mz

= 2.59

a1
mz

= −0.142

aλθ
mz

= 0.026

kv
mx

= 0.293 kv
mz

= 0.157 kv
my

= −0.112

Table 2. Parameters of all axes

φλ(t) =
[

λ̇
µλ sin(θ(t))

]
, Ωλ(t) =

[
−aωy

my

+kv
my

]
The signal inputs are similar to those used for pitch motion
except for the amplitude which is multiplied by a factor 2.

Fig. 5. Pitch, Elevation and Travel parameters

Conclusion on the results After having studied the
pitch motion separately from the other axes, the results
are summarized in the Table 2. The given values are
mean values after more than 20 experiments with various
disturbances signals (see Figure 5). Errors on these values
are estimated to be of less than 20 %, which is the
gap between results obtained for various identification
experiments with various disturbances signals.



4. CONCLUSIONS

In the paper the algorithms for adaptive parameter identi-
fication of separate pitch and elevation motions for “LAAS
Helicopter Benchmark” are designed and experimentally
tested. Laboratory experiments demonstrate possibility of
application of the considered identification algorithms in
the real-world conditions under the influence of unmodeled
plant dynamics and sensor errors.

The future work intentions are in designing the closed-loop
adaptive control laws based on the described parameter
identification procedure and using parameter identification
results for robust controllers design.
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