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Abstract
This article illustrates the problems arising at data pro-

cessing of passive experiment. Some specifics of pas-
sive experiment and subtleties of data processing with
aid of available mathematical methods are considered.
It is shown how the parity of the sampling period, time
parameters of signal’s properties and dynamic proper-
ties of object in common influence on the researcher
representation about object. It is shown that the insuffi-
cient speed of hardware and the inaccessibility of some
input parameters may lead to the big growth of errors
at processing of experimental data.
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1 Introduction
The considerable attention in scientific physics com-

munity (European, Russian, American, etc. maga-
zines) always has been given to methodological issues
of physical experiment.
Features of active and passive experiment can be de-

termined in accordance with Table 1.
Active experiment is carried out with application of

artificial influence on object under the special program.
It allows to solve research problems faster and more ef-
ficiently, but is more complex, requires great material
expenses and can prevent the normal course of techno-
logical process.
At passive experiment the object functions in a usual

mode. The information on object is registered in the
form of signals from input and output variables. These
signals can only be observed, but it is impossible to
influence them, so the experimenter is in position of
the passive observer [Bendat, Piersol,1966].
We will dwell on some specifics of passive experiment

and on subtleties of data processing with aid of avail-
able mathematical methods.

Table 1. Experimental data processing system

Active experiment Passive experiment

Creating a ”refined con-
ditions”

Virtually unrestricted
dataflow

Minimizing the number
of experiments

Narrow range of mea-
surements

Maximum simplification
of procedures of data
processing

Strong noise

Work in real time

2 System restrictions of the passive experiment
It is advised to put some text between a section head-

ing and a subsection heading.
The use of data of normal operation of the object

causes the wide range of system-related problems:

1. Work in real time.
2. Stochasticity of influences.
3. Dynamic properties of objects.
4. Limited observation intervals.
5. Discrete-continuous transformations.

About influence of some of these problems on the iden-
tification task solution we reported in S. St-Petersburg
[Serdyuk, Troyanovskyi, 2009]. Here let’s consider
how such problems become apparent when the phys-
ical experiment processing.
Let’s start from calculating the average estimate of a

sample of limited amount. It is widely known the re-
sult of classical probability theory about reduce of the
variance in N times relative to dispersion of equivalent
independent variables (the number of N ).
Therewith the dispersion level decrease of average is

more complicated and depends on the correlation of
data and the sampling period from a private realization.
Confidence intervals (Fig. 1) may differ [Troy-



anovskyi, 2004] in the case of independent signal and
correlated signal. Note that the central limit theorem

Figure 1. Fluctuations of the estimated average over realizations of
limited length with different correlations

”works” by averaging a large number of samples, so
that the boundaries of corridors are almost independent
on the type of distribution of the original signal ampli-
tudes.
Therewith averaging of the correlated signal increases

a dispersion of a computed estimate, and speed of con-
vergence of current average to expectation of signal be-
come worse depending on degree of signal correlation.
It can lead to unexplained and unstable discrepancies

of the properties of calculated estimates with the theo-
retically predicted.

3 The problem of using discrete-continuous model
of a continuous process

A more complicated situation arises as result of
the discrete-continuous transformations of signals with
digital computer aid for continuous processes. Possi-
bility and legitimacy of consideration of all processes
(and continuous and discrete) in uniform time are con-
sidered in [Troyanovskyi, 2004]. However we would
like to analyze especially: how the parity of the sam-
pling period, time parameters of signal’s properties and
dynamic properties of object in common influence rep-
resentation of the researcher about object?
Let the test object or process has a linear structure

(Fig. 2).
Here
k – static transfer constant (gain factor);
h(t) – object weight function, reflected its dynamic

properties. The function is normalized

∞∫
λ=0

f(λ) dλ (1)

Figure 2. An object with linear structure

Connection of signals at the input and output of a
linear dynamic object is described by the convolution
equation

z(t) = k

t∫
τ=−∞

x(τ)h(t− τ) dτ (2)

Remarks:

1. The last equation does not impose any restrictions
on the type of signal, including the random signals.

2. Equation (2) is invariant to the time reference
point.

It is easy to show that the static transfer constant k
has the physical meaning of the ratio of steady output
signal to the input step signal (at the end of the transi-
tion process), and the weight function h(t) – an object
reaction on input signal in form of δ-function at k = 1.
Note that if in the result of some experiment we can

determine the generalized characteristic

H(t) = kh(t), (3)

then by ratio (1)

∫
H(t) =

∫
kh(t) = k. (4)

Let us now see what happens when you use of a
discrete-continuous model instead of a real continuous
object. To do this, from the original continuous signal
discrete samples are selected and subjected to digital
processing and subsequent recovery (Fig. 3).
The process of sampling is described by the proce-

dure of multiplying the original continuous signal on
sequence δ- functions:

x∗(t) = x(t)

∞∑
i=−∞

δ(t− iTs), (5)

where
x∗(t) – quantified in time signal x(t);



Figure 3. The structure of a discrete-continuous model

Ts – period of sampling.
For the linear case, the discrete output signal are de-

termined with aid weighting factors of processing func-
tion and the sampled input signal as

y[i] =
∑
j

h[j] · x[i− j]. (6)

If the discrete input and output signals are expressed
as continuous functions of time, just as was done for
the signal x∗(t), the latter expression takes the form:

y∗(t) =
∑
j

h[j]x(t)
∑
j

δ(t− iTs − jTs) (7)

or

y∗(t) =
∫
λ

h(λ)
∑
j

δ(λ− jTs)×

×x(t)
∑
j

δ(t− iTs − λ)dλ =

=
∫
λ

h∗(λ)x∗(t− λ)dλ,

(8)

where it is defined

h∗(λ) = h(λ)
∑
j

δ(λ− jTs) (9)

discrete weight function of a linear processing unit, ob-
tained by discretization of the original continuous func-
tion – a prototype, or the multiplication of discrete or-
dinates h[j] on the sequence of δ-functions.
Restoring a continuous waveform from its discrete

samples is made by a variety of ways. In the case of
a simple digital-to-analog converter or the zero-order
clamp, the last signal value, converted to analog form,
remains at all near term Ts. It can be described by a
weight function

p(t) =

{
1, at 0 ≤ t < Ts

0, beyond this interval
(10)

The generalized weight function H1(t) and the recon-
structed signal z1(t) are characterized by step functions
(Fig. 3).
The difference between functions H(t) and H1(t) de-

termines the difference of static transfer constant of a
real object, and discrete-continuous model.
Indeed, in the case of a continuous object

∫
H(t) =

∫
kh(t) = k, (11)

but for a model

k1 =

∫
H1(t) = kTs

∑
i

h[i] (12)

that demonstrates a shift in the transfer constant k1 rel-
ative to the true quantity k.
Simulation shows that the relative size of distortion is

greater than 1 for aperiodic link of the first order and
the relative size of distortion less than 1 for aperiodic
link of the second and higher order. The size of rela-
tive displacement can make tens and hundreds per-
cent. It depends on the weight function of the object
and the ratio between period Ts and the weight func-
tion length of the object.
Thus, if the speed of digital computers begins to

noticeably inferior temporal scales of the process,
discrete-continuous model of the process causes signif-
icant distortion, even in a static transfer constant.
The same words can be said about the dynamic char-

acteristics of the model, but the corresponding analysis,
some results of which are described in [Troyanovskyi,
2004; Troyanovskyi, 2009], and the weight function
length of the object.

4 Features of the experiment in the study of a mul-
tidimensional object

Let’s consider the process of data processing, for ex-
ample, when trying to determine the dynamic proper-
ties of the object.
As it is shown in [Serdyuk, Troyanovskyi, 2009; Troy-

anovskyi, 2004], for a one-parameter object with inde-
pendent additive noise in the output signal an estimate
of the transfer constant and the weight function of the
object can be calculated, and their statistical proper-
ties can be determine. These results can be extended
to the case of a multidimensional (multi-input) object
with independent inputs, if there is a simultaneous con-
sideration of all input signals. Indeed, in this case the
generalized weight vector function of the object takes
the form of a column, consisting of vector functions of
individual channels and the total covariance matrix of
input signals becomes strictly diagonal structure.
All this makes it possible to apply successfully the ap-

proach [Serdyuk, Troyanovskyi, 2009; Troyanovskyi,
2004], and dispersion of the output noise is equal to the
dispersion of the initial noise



(σ2
out)1 = σ2

n. (13)

Note that the efficiency of processing of the increased
data flow can be enhanced through the organization of
parallel computations [Serdyuk, Troyanovskyi, 2008].
However, an attempt to separate definition of the dy-

namic properties of individual channels leads to a de-
terioration of results. Here unrecorded channels play a
role of additional noise (Fig. 4). They operate as addi-
tional unknown signals and increase an active noise.

Figure 4. The scheme of separate identification for each individual
channel

Indeed, for a 3-dimensional object level of current out-
put noise is defined as

(
σ2
out

)
1
= σ2

n + σ2
2 + σ2

3 . (14)

If σ2
1 = σ2

n = σ2
2 = σ2

3 , then

(
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)
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0
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(
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2
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)
. (15)

where

γ =
σ2
n

σ2
0

(16)

– relative level of additive noise.
With independent input signals estimate of weigh

function remains unbiased. However, growth in noise
level leads to a deterioration of statistical stability of es-
timate, as the acting output noise for this case increases
in
(
1 + 2

γ

)
times, i.e. tens and hundreds of percent,

depending on the ratio of the dispersion of signals and
noises.

In the more general caseN -dimensional object ratio g
of existing output noises in simultaneous and separate
determination of the dynamic properties of individual
channels is defined as

g =

(
σ2
out

)
2

(σ2
out)1

=

σ2
n +

N−1∑
i=1

σ2
i

σ2
n

=

= σ2
n

1 +

N−1∑
i=1

σ2
i

σ2
n

 , (17)

and it leads to corresponding differences in disper-
sions of ordinate estimates of the weight function. Tak-
ing into account results of [Serdyuk, Troyanovskyi,
2009; Troyanovskyi, 2004] it is easy to show the fol-
lowing. At separate identification of channels there is
an increase in a dispersion of estimations of weight
functions. In case of channels equal in rights with
identical dispersions of signals on an exit this increase
reaches sizes

g̃ = 1 +
N − 1

αγ
(18)

Here the factor α reflects decrease in level of noise in-
fluence on identification accuracy in case of correlated
noise).
Simulation results (Fig. 5) show how application of

system approach and appropriate data processing algo-
rithms can increase identification accuracy by tens and
hundreds of percent as the view of the increasing num-
ber of channels.

Figure 5. Growth of identification accuracy at the expense of par-
allel computations

Unfortunately, very often at the processing of physi-
cal experiments for multi-dimensional studied objects



only a portion of input signals is known (or available
for simultaneous measurements). Accordingly, in this
case the experimenters have to pay for the duration of
the experiment and increasing data amounts to achieve
the desired statistical accuracy.

5 Conclusion
1. Passive physical experiment requires taking into

account a wide range of system-related problems
and some development of the methods of data
analysis.

2. Involvement of the stochastic processes theory al-
lows to avoid unexplained and unstable discrepan-
cies of properties of the estimates of the average
with the theoretical predictable on the basis of the
classical theory of probability.

3. Analysis in time domain, involving the description
of properties of a linear dynamic object on the ba-
sis of a convolution equation shows that such sys-
tem restrictions as the speed of hardware involved
and the inaccessibility of some input parameters
may lead to the big growth of errors at processing
of experimental data.
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