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Abstract  
NanoMechanical Cantilever Sensors (NMCS) have recently 

emerged as an effective means for label-free chemical and 
biological species detection. They operate through the 
adsorption of species on the functionalized surface of 
cantilevers. Through this functionalization, molecular 
recognition is directly transduced into a micromechanical 
response. In order to effectively utilize these sensors in 
practice, the chief technical issue related to modeling must be 
addressed in order to correctly relate the micromechanical 
response to the adsorbed species. Along this line of reasoning, 
this paper presents a general nonlinear-comprehensive 
modeling framework for piezoelectrically-actuated 
microcantilevers and validate it both analytically and 
experimentally. The proposed model considers both 
longitudinal and flexural vibrations of the microcantilever 
sensor and their coupling in addition to the ever-present 
nonlinearities due to geometry of the microcantilever. More 
specifically, it is demonstrated that the electromechanical 
coupling in these sensors is also nonlinear which appears in 
quadratic form. Through extensive experimental 
measurements, the coefficient of such quadratic nonlinear 
term is determined which compares well with both analytical 
and numerical results. Taking into account the inextensibility 
feature of such sensors, the coupled longitudinal and flexural 
equations of motion are reduced to one nonlinear flexural 
equation. The resultant nonlinear equation of motion is then 
solved using the method of Multiple Scales to arrive at the 
frequency response of the system, analytically. Consequently, 
the system response to a number of periodic excitations with 
different amplitudes is experimentally and analytically 
investigated which matches the analytical results very well. 
Finally, the frequency response results clearly demonstrate the 
presence of nonlinear quadratic term in electromechanical 
coupling in these sensors. This is a critical observation when 
designing and employing such sensors for practical 
applications. 
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1. Introduction 

NanoMechanical Cantilever Sensors (NMCS) have recently 
emerged as an effective means for label-free chemical and 
biological species detection. Selectivity, low cost, and easy 
mass production make them an enabling technology for 
micro- and nano-detection techniques. NMCS operate through 
the adsorption of species on the functionalized surface of 
cantilevers. Through this functionalization, molecular 
recognition is directly transduced into a micromechanical 
response. More specifically, piezoelectrically-actuated NMCS 
have been recently employed to improve the MEMS devices 
for better actuation and sensing quality. For this purpose and 
considering small scale nature of these microcantilevers, a 
nonlinear-comprehensive modeling development is needed.  

This research is motivated by many applications of such 
microcantilevers including, but not limited to, 
microsensors/actuators, energy harvesting and scanning force 
microscopy. The dynamic modeling of a piezoelectric 
transducer, based on nonlinear piezoelectric mechanical 
properties, has been investigated to describe the harmonic 
generation that occurs on velocity signal analysis when 
transducer is driven at high voltage [1]. The vibration 
produced by piezoelectrically-actuated beam can drive small 
electrical motors. In this system, piezoelectric transforms 
electrical energy into mechanical vibration that is transformed 
via frictional contact between tip and slider to motion of the 
driven part [2]. A broad range of piezoelectrically-actuated 
microcantilever has been utilized in Scanning Force 
Microscopy (SFM). Atomic force microscopy (AFM) [3], 
friction force microscopy (FFM) [4] and biological mass and 
sequencing measurements [5] serve as demonstrable examples 
of such applications.  

Mechanical properties of the piezoelectric layer should be 
deeply investigated with proper electromechanical properties 
applied to the mathematical model. Piezoelectric beams for 
application in sensors and actuators have been studied and a 
comparative study demonstrates that the piezoelectric effect is 
much higher than electrostatic activation in many applications 
[6]. Nonlinear behavior of piezoelectric ceramics has also 
been researched and its characterization under high excitations 
has been studied [7]. A method to measure the mechanical 
nonlinear coefficients of piezoceramics with high signal 
excitation has been developed [8, 9]. The bending of layered 
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piezoelectric beams subjected to electrical and mechanical 
loadings has been researched and effect of strain on electrical 
field in the layer has been obtained [10]. A variational energy 
approach has been utilized to analyze electromechanical 
coupling of piezoelectric beams [11]. Coupled 
electromechanical response of an infinitely long piezoelectric 
tube as a sensor/actuator has been investigated by variational 
approach [12].  

Nonlinearity in equations of motion and frequency response is 
obtained from nonlinear geometry of the beam vibration and 
inextensibility of the beam. Using a geometrical approach, the 
equations of motion for nonlinear flexural-flexural-torsional 
vibrations of inextensible beams have been obtained and the 
stability of the systems has been investigated [13, 14]. 
Piezoelectrically-actuated cantilevers considering linear 
electromechanical stress-strain relations have also been 
investigated [15, 16] and the equations of motion of the 
systems have been derived. In addition, equations of motion 
of piezoelectrically-driven microcantilever with nonlinear 
geometry have been derived and nonlinear cubic and quadratic 
terms due to the presence of piezoelectric layer on the 
microcantilever have been explored [17-19]. 
This paper presents a general nonlinear-comprehensive 
modeling framework for piezoelectrically-actuated 
microcantilevers and validate it both analytically and 
experimentally. The proposed model considers both 
longitudinal and flexural vibrations of the microcantilever 
sensor and their coupling in addition to the ever-present 
nonlinearities due to geometry of the microcantilever. More 
specifically, it is demonstrated that the electromechanical 
coupling in these sensors is also nonlinear which appears in 
quadratic form. Through extensive experimental 
measurements, the coefficient of such quadratic nonlinear 
term is determined which compares well with both analytical 
and numerical results.  

2. Governing Equations of Motion 

In this section, the governing equations of motion for the 
flexural vibrations of a piezoelectrically-actuated 
microcantilever sensor are derived following the pattern found 
in Crespo da Silva [13]. As shown in Fig. 1a, the piezoelectric 
layer is deposited on the top side of the microcantilever and is 
utilized to actuate the beam by supplying a voltage, P(t). The 
dynamics of the beam are described by a longitudinal 
displacement u(s,t) and a transversal displacement v(s,t), Fig. 
1b, where s denotes the arclength and t denotes the time. To 
describe the beam dynamics, two coordinate systems are 
utilized: the (x, y, z) system is considered to be inertial, while 
the (ξ, θ, ζ) system is a local principal system. The 
relationship between the principal and the inertial coordinates 
is described by the Euler rotation, ψ(s,t). For an element of 
length ds, ψ can be written as, Fig. 1b 

1tan
1

v

u
−

′
=

′+
ψ ,                              (1) 

where the over prime denotes derivative with respect to the 
arclength s. To derive the strain-displacement relations, the 
Euler-Bernoulli beam theory is adapted which involves the 
assumptions that the angular deformation due to shear is 
negligible when compared to the flexural deformations due to 
bending and that the rotation of a differential element is very 
small in relation to its translation. By examining Fig. 1b, it 
becomes evident that, before deformation, the position vector 
of an arbitrary point on the neutral axis of the beam is given 
by 0 xr s= e . After deformation, its position 

becomes ( )r s u v
ξ θ

= + +e e . Using these position vectors, the 
strain along the neutral axis of a differential element ds can be 
expressed as  

( )
11
22

2 20 0
0 . . 1 1

r rr r
u v

s s s s

∂ ∂∂ ∂ ′ ′ε = − = + + −
∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.    (2) 

   

Figure 1. a) Schematic of the microcantilever sensor and, b) The principal and 
inertial coordinate systems. 

and the axial strain at a point having the coordinates ( , , )ξ θ ζ  
can be written as  

11 0 ζ
ε = ε − θρ .                               (3) 

where ζρ  is the beam curvature given by 
2v v u v u v v

ζ
′′ ′′ ′ ′ ′′ ′′ ′ρ = − − − . Further details on the derivation 

of equation (3) can be found in [18, 19]. Next, using the 
constitutive equations, we relate the axial stress developed in a 
differential element to its axial strain. For silicon, the 
constitutive equations can be written as 

11 11

b b

bEσ = ε                                         (4) 

where 
*

2(1 )
b

b

b

E
E =

− ν
. Here, *

bE is modulus of elasticity for 

silicon and νb is its Poisson’s ratio. Further, for the 
piezoelectric material the constitutive equations are given by 
[11] 
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σ = ε + ε − ,                 (5) 
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Now, the total strain energy of the beam and piezoelectric 
layer can be written as 

( ) ( )
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( ) ( )
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⎜ ⎟
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∫ ∫∫ ∫ ∫∫
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∫

    (6) 

where dA is the cross sectional area of a differential beam 
element and 

( ) ( )
( )

0 3 1 2

3

( ) l b b b l l p p p

l l b t b

EA s H H E w h H H E w h

H H E w h

= − + −

+ −
    (7) 

where H(s) is the Heaviside function, w denotes the width, h 
denotes the thickness, and the subscripts b, p, and t indicate 
the silicon, piezoelectric material, and the beam tip, 
respectively, Fig. 1 a. It is worth noting that the potential 
energy of the electric field has not been included in the total 
potential of the system. This stems from the fact that, we only 
consider the direct piezoelectric effect in which the voltage 
P(t) is prescribed and not considered as a degree of freedom.   
Next, the kinetic energy of the system can be expressed as 

2 2

0

1
( )( )

2

l
T m s u v ds= +∫ ,                      (8) 

where 
( )( )

1 2
( )

b l l p
m s H H= ρ + − ρ ,                      (9) 

and ρb and ρp are the linear mass densities of silicon and the 
piezoelectric layer, respectively.  
Using equations (6)-(8), the Lagrangian of the system, 
L T U= −  can be written as 

{ (
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(11) 
where yn represents the neutral axis of the beam and is given 
by 

( )
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Next, we consider that the beam is inextensible, meaning that 
the neutral axis does not undergo any relative elongations, 
thereby the strain along the neutral axis is equal to zero and 
equation (2) reduces to [17] 

( )2 21 1u v′ ′+ + = .                           (14) 
Equation (14) is known as the extensibility condition and is 
used to relate the flexural and the longitudinal vibrations of 
the beam. To obtain the equations of motion for the flexural 
vibrations of the sensor, we utilized Hamilton’s principle 

which states that ( )2

1

0
t

t
L W dtδ + δ =∫ , where δ is the first 

variation of the functions symbol and W is the work of 
external forces which is zero in our case. It follows form 
equation (9), (14), and Hamilton’s principle that the equations 
of motion and the associated boundary conditions can be 
written as  

( ) ( )
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2

1 1
( ) ( ) ( ) ( )
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l

p p
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K s v P t K s P t

′′ ′″ ′′′ ′′ ′ ′ ′′+ + +

′ ′
′′ ′ ′ ′ ′ ′+ + −

″ ″
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∫ ∫

α

(15) 

0v v ′= =    at  s=0;    0v v′′ ′′′= =    at  s=l .         (16) 
By examining equation (15), two types of nonlinearities are 

observed: first the quadratic nonlinearities which are 
manifested in the third term and is resulting from the material 
nonlinearities of the piezoelectric layer; second the cubic 
nonlinearities which are due to the geometry of the beam and 
appear as nonlinear inertia and stiffness terms (fourth and fifth 
terms in equation (15)). In addition, the sixth term in equation 
(15) represents a nonlinear parametric excitation term 
emanating from the nature of the piezoelectric excitation. 

3. Model Discretization 

We derive a reduced-order model Equation (15) by utilizing a 
separation of variables in which the deflection v(s,t) is 
discretized into  

   ( , ) ( ) ( )v s t s Q t= Φ ,                         (17) 
where the Q(t) are the generalized temporal coordinates and 
the ( )sΦ  are chosen as the orthogonal set of basis functions 
representing the mode shapes of a cantilever beam and given 
by [20]  
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where the zn are roots of the following characteristic equation: 

1 cos( ) cosh( ) 0n nz z+ =                          (19) 
Substituting equation (18) into equation (15), multiplying the 
result by the mode shapes, φn, integrating the outcome over 
the length of the beam and using the orthonormality properties 
of the linear mode shapes, we obtain the following set of 
ordinary-differential equations: 

( )

2 2 3

1 2

2 2 2

3 5 4

ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( )
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+ + + =
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where the ˆnig are modal time-independent coefficients 
defined as 

( )2

0
( ) ( ) ( )

l

n n ns K s s ds″′′ω = φ φ∫                  (21a) 

( )

( )

2

1 0

0

1
ˆ ( ) ( ) ( )

4
1

( ) ( ) ( )
2

l

n n p n

l

n n p n

g s K s s ds

s K s s ds

″
′= φ φ

′′′ ′− φ φ φ⎡ ⎤
⎣ ⎦

∫

∫
          (21b) 

( )2 0
ˆ ( ) ( ) ( ) ( ) ( )

l

n n n n ng s s K s s s ds
′′′ ′ ′′= φ φ φ φ⎡ ⎤

⎣ ⎦∫      (21c) 

2

3 0 0
ˆ ( ) ( ) ( ) 2 ( )

l s s

n n n nl
g s s m s s dsds ds

′
′ ′= φ φ φ⎡ ⎤

⎣ ⎦∫ ∫ ∫  (21d) 
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1
ˆ ( ) ( )

2

l
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( )2

5 1 0

3
ˆ ( ) ( ) ( )

2

l

n n npg s I s s ds′′′′= α φ φ∫             (21g) 

and ˆ
nµ  are modal damping coefficients introduced to 

represent linear damping effects. 

4. Primary Resonance of Microcantilever 
A microcantilever sensor operates by piezoelectrically 
exciting the beam at one of its resonance frequencies and 
observing variations in its dynamic behavior. As such, the 
primary resonance of the microcantilever must be 
investigated. Towards that objective, we utilize the method of 
multiple scales [21] and seek a uniform second-order 
nonlinear approximate solution of Equation (20) near nω . we 
seek a solution of the form 

0 0 1 2 1 0 1 2( ; ) ( , , ) ( , , )n n nq t q T T T q T T Tε ε= + +  ,         (22) 
We scale the quadratic nonlinearity to appear at the second 
order of the perturbation problem and scale the damping to 
balance the effects of forcing and cubic nonlinearities at the 
third order of the perturbation problem. In other words, we let  

2 2

5 5
ˆ ˆˆ ˆ ; 1, 2, 3, 4.;n n ni nig g g g iµ = ε µ = ε = ε =           (23) 

Now, substituting equations (22-23) into equation (20) and 
equating coefficients of like powers of ε yields 

( )0 2 2

0 0 0: 0n n nD q qε ω+ =                     (24) 
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0 1 1 0 1 0 5 0: 2n n n n n nD q q D D q g qε + ω = − −        (25) 
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(26) 

The solution of the first-order problem, equation (24), can be 
expressed as  

0

0 1 2( , ) ni T

n nq A T T e ccω= + ,                    (27) 
where An is a complex valued function that will be determined 
at a later stage in the analysis and cc is the complex conjugate 
of the preceding term. Substituting equation (27) into equation 
(25), and eliminate any secular terms, and obtain 1 0nD A = . 
Therefore, An must be independent of T1. Considering this 
fact, and substituting the solution of equation (25) into (26), it 
can be written as 
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⎡ ⎤
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(28) 

The excitation voltage is considered to be a sinusoidal of the 
form  

( ) 1

2
i tP t fe ccΩ= +                          (29) 

 where f is the voltage magnitude and Ω is the excitation 
frequency. To describe the nearness of the excitation 
frequency, Ω , to the natural frequency, nω , we introduce the 
detuning parameter σ, and let 

n nΩ = ω + εσω .                               (30) 
Substituting Equation (30) into Equation (28) and eliminating 
the secular terms and expressing the amplitude in the polar 
form 

( ) ( )2

2

1

2
ni T

n nA T a e β= .                         (31) 

then separating the real and imaginary parts of the outcome 
yields  

( )4
2 1

1
ˆ sin

2 2
n

n n n n n n

g f
D a a Tω = − µω + σω − β ,         (32) 

( )3 24
2 1 1

1
cos

2 4
n

n n n eff n n n n n

g f
a D N a g fa Tω β = − − σω − β⎡ ⎤

⎢ ⎥⎣ ⎦
.(33) 

where Neff is a measure of the effective nonlinearity of the 
system and is given by 
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.               (34) 

Eq.(35) shows the steady state condition derived from (32) 
and (33);  

( ) ( )
23 2

2 2

4 42

1

8
ˆ

4 2
eff n n n

n n n n

n n

N a a
a g g f

g a

− ω σ
µω + =

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

    (35) 

Equation (35) represents the nonlinear frequency-response 
equation for a piezoelectrically-actuated microcantilever 
sensor. For a given level of voltage excitation f, equation (35) 
can be solved numerically for the associated response 
amplitude, na . Since gn5 appears as a negative and squared 
term in the effective nonlinearity expression, including the 
material nonlinearities would certainly decrease the magnitude 
of the effective nonlinearity of the sensor making the 
frequency response less and less hardening. For a sensor of 
known geometry and linear material properties, the 
coefficients gn2 and gn3 are well-defined, Table 1. On the other 
hand, the coefficient gn5, which depends on the nonlinear 
material properties of the piezoelectric layer, can not be 
theoretically computed because the experimental value of α1 is 
not available in the literature. As such, this coefficient will be 
obtained experimentally by examining the nonlinear response 
characteristics of the sensor as illustrated in the next sections. 

Table 1. Geometric and Material Properties of the microsensor. 
Symbol Value Symbol Value 

Eb 185 GPa Ep 133 GPa 

ρb 2330 kg/m3 ρp 6390 kg/m 

hb 4 µm hp 4 µm 

l 500 µm l2 375 µm 

wb 250 µm wp 130 µm 
wt 55 µm   

5. Experimental Validation 
In this section, the experimental setup utilized to validate the 
nonlinear theoretical model and to identify the unknown linear 
and nonlinear parameters is presented. The sensor utilized in 
the experiments is the DMASP® microcantilever beam 
manufactured by Veeco® Instruments and shown in Fig. 
2(right). The beam is actuated by supplying a voltage to a 
piezoelectric layer made of one 3.5µm Zinc Oxide (ZnO) 
layer and two 0.25µm Titanium-Gold (Ti/Au) layers. Such 
microcantilevers have been extensively utilized for scanning 
and sensing applications. The geometric and material 
properties of the cantilever are listed in Table 1.  

To validate the theoretical model, we compare the frequency-
response curves obtained experimentally to those obtained 
theoretically via equation (35). To that end, two unknown 
parameters are obtained experimentally. First, the linear 
damping coefficient µ̂ = ζexp/(2 ω1) ,where ζexp represents the 
experimental damping ratio, is obtained using the half-power 
points approach [20].  For the sensor under consideration, we 
found that the damping ratio varies between ζexp.=0.0025 and 
0.0034  (air and structural damping). As such we utilized an 
average value of ζexp=0.00295.  

 
Figure 2. (left) MSA-400 microsystem analyzer, (right) DMASP® 

microcantilever and microscopic image of microcantilever. 

Second, the coefficient of material nonlinearity in the 
piezoelectric layer is obtained using the frequency-response 
curves. More specifically, by utilizing the loci of the peaks of 
the experimental response for different voltages, we curve fit 
the best quadratic polynomial relating the response peaks to 
the frequency-detuning parameter.  The generated polynomial, 
known also as the backbone curve, is compared to that 
obtained analytically by finding the extrema of equation (35). 
These correspond to the solution of 

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

1

2

3

4

5

6

7

8

σ

T
ip

 V
el

oc
it

y 
(m

/s
)

 
Figure 3. Backbone curve of the frequency response. Circles represent the 

peaks of the experimentally-obtained frequency response curves and the solid 
line represents their best quadratic curve fit. 
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The only unknown in Equation (36) is the coefficient 15g . By 
comparing equation (36) to the best polynomial fit shown in 
Fig. 3, we find that 15g  is equal to 60 and, hence, by virtue of 
equation (21g), the material nonlinearity coefficient of the 
piezoelectric layer can be found to be α1= 4645.23 GPa. 
Using the experimental values of the linear damping and 
material nonlinearity coefficient, we generate the frequency-
response curves via equation (35). These curves are compared 
to the experimental data in Fig. 4 demonstrating excellent 
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agreement everywhere in the frequency range and not only at 
the peak frequencies. This clearly illustrates the validity of the 
proposed model. 
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Figure 4. Analytical and experimental frequency response curves. Circles 
represent experimental data and the solid lines represent analytical results. 

6. Conclusions 

In order to effectively utilize microcantilever sensors in 
practice, the chief technical issue related to modeling must be 
addressed in order to correctly relate the micromechanical 
response to the adsorbed species. Along this line, the 
nonlinear equations of motion governing flexural vibrations of 
these sensors have been derived. The proposed model 
considered both longitudinal and flexural vibrations of the 
microcantilever sensor and their coupling in addition to the 
ever-present nonlinearities due to geometry of the 
microcantilever. More specifically, it was demonstrated that 
the electromechanical coupling in these sensors is nonlinear 
which appeared in quadratic form. Through extensive 
experimental measurements, the coefficient of such quadratic 
nonlinear term was determined which compared well with 
both analytical and experimental results. Finally, the 
frequency response results clearly demonstrated the presence 
of nonlinear quadratic term in electromechanical coupling in 
these sensors. 
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