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Abstract
We demonstrate experimentally and theoretically the

occurrence of complex sequences of periodic mixed-
mode and chaotic oscillations in light emitting diodes
with optoelectronic feedback. The experimental results
have been qualitatively reproduced by a simple phys-
ical model of the system showing that the observed
dynamics is the result of canard-phenomena in a 3D
phase-space. We also investigate the transition between
periodic and chaotic mixed-mode states and analyze
the effects of noise on the chaotic attractors in coupled
systems. In particular, we show that in the presence of
white noise source, coupling enhances the coherence in
the system response.
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1 Introduction
Oscillatory dynamics in chemical, biological and

physical systems often takes the form of complex tem-
poral sequences known as mixed-mode oscillations
(MMOs) [Focus issue, 2008]. Typical time traces are
characterized by a mixture of L large-amplitude re-
laxation spikes followed by S small-amplitude quasi-
harmonic oscillations, while oscillations of intermedi-
ate amplitude do not occur. Sequences of this type
are ubiquitous in nature and have been originally ob-
served in chemical reactions more than 100 years ago
[Ostwald, 1900], with the Belouzov-Zhabotinsky reac-
tion discovered in the 70s being the most thoroughly
studied example [Schmitz, Graziani and Hudson, 1977;

Showalter, Noyes and Bar-Eli, 1978; Maselko and
Swinney, 1987; Brons and Bar-Eli, 1991]. More recent
studies involved surface chemical reactions [Bertram
and Mikhailov, 2001; Bertram et al., 2003; Kim et al.,
2001] electrochemical systems [Koper, 1995; Plenge,
Rodin, Scholl and Krischer, 2001] neural and cardiac
cells [Alonso and Llins, 1989; Medvedev and Cister-
nas, 2004], calcium dynamics [Kummer et al., 2000]
and plasma physics [Mikikian, Cavarroc, Couedel,
Tessier and Boufendi, 2008], to name just a few. As
some bifurcation parameter is varied, MMOs can be
ordered in periodic-chaotic sequences, in which inter-
vals of periodic states are separated by chaotic states
resembling random mixtures of the adjacent periodic
patterns. In other cases, these mixtures can form peri-
odic concatenations following the Farey arithmetic.

Several mechanisms can be at the origin of these phe-
nomena [Focus issue, 2008], for instance the quasiperi-
odic route to chaos on an invariant 2-torus [Larter
and Steinmetz, 1991] and the loss of stability of a
Shilnikov homoclinic orbit [Arneodo, Argoul, Elez-
garay and Richetti, 1993; Koper, 1995]. However,
periodic-chaotic sequences and Farey sequences of
MMOs do not necessarily involve a torus or an homo-
clinic orbit, but can occur also through the canard phe-
nomenon [Benoit, Callot, Diener and Diener, 1981].
Here, a limit cycle born in a supercritical Hopf bifur-
cation experiences the abrupt transition from a small-
amplitude quasi-harmonic cycle to large relaxation os-
cillations in a narrow parameter range (canard explo-
sions). Although this sudden transition can be easily
misinterpreted as a homoclinic bifurcation, here an ex-
act homoclinic connection to a saddle-focus does not
occur and therefore application of the Shilnikov the-
orem is not allowed. Such behavior is typical in 3D



multiple time-scale dynamical systems, which can be
described in terms of a fast 2D oscillatory subsystem,
coupled to a slowly evolving variable acting as a qua-
sistatic bifurcation parameter. The strong separation of
time-scales may induce the switch between periods of
small-amplitude and relaxation oscillations and makes
the flow to pass very closely to the saddle-focus sta-
tionary state, thus ”simulating” trajectories close to the
Shilnikov condition. For this reason, canard phenom-
ena in 3D systems are often referred to as incomplete
homoclinic scenarios [Koper, Gaspard and Sluyters,
1992]. Although most of the studies of this dynam-
ics have been carried out in chemical systems, in-
complete homoclinic scenarios have been recently pre-
dicted and observed also in semiconductor lasers with
opto-electronic feedback [Al-Naimee, Marino, Ciszak,
Meucci and Arecchi, 2009] and optical cavities with
movable mirrors [Marino, Marin, Balle and Piro, 2007;
Marino and Marin, 2011]. In these works, attention
has been focused on the chaotic-spiking regime, a spe-
cial kind of MMOs where large pulses are separated
by an irregular number of quasi-harmonic oscillations,
and on the excitable features of the small-amplitude
periodic and chaotic attractors appearing just beyond
the first supercritical Hopf bifurcation [K. Al-Naimee
et al., 2010]. Here, we investigate experimentally the
transition between periodic and chaotic mixed-mode
states and analyze the effects of noise on chaotic at-
tractors in two coupled systems.

2 Mixed mode oscillations: the experiment
The system here considered is a light-emitting diode

(LED) with AC-coupled nonlinear optoelectronic feed-
back. The LED is driven by a constant voltage gener-
ated by a DC-power supply. The output light is sent to
a photodetector producing a current proportional to the
optical intensity. The corresponding signal is sent to
a variable gain amplifier characterized by a nonlinear
transfer function of the form f(w) = Aw/(1 + sw),
where A is the amplifier gain and s a saturation coeffi-
cient, and then fed back to the injection current of the
LED. The feedback strength is determined by the am-
plifier gain, while its high-pass frequency cut-off can
be varied (between 1 Hz and 100 KHz) by means of
a tunable high-pass filter. A constant negative control
bias from a low-voltage generator is added to the LED
driving voltage through a mixer, allowing us the fine
tuning of the control parameter. For zero control bias,
the LED driving voltage and the feedback amplifica-
tion are such that the system is in the relaxation oscilla-
tions regime (see Fig. 1a). In order to characterize the
system dynamics, it is more meaningful to define the
dimensionless control parameter Vn = (V0 − V )/V0,
where V is the considered bias voltage and V0 is the
control voltage corresponding to the stationary state.
In this way Vn represents the normalized distance be-
tween our operation point and the end of the transi-
tions. We assign the MMO states the symbolic nota-
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Figure 1. Experimental time-series of the optical intensity as Vn is

decreased: a) Vn = 0.056, b) Vn = 0.039, c) Vn = 0.024, d) Vn =

0.016, e) Vn = 0.005.

tion LS where L gives the number of large amplitude
oscillations, and S the number of small amplitude os-
cillations in a single periodic pattern. The aforemen-
tioned relaxation oscillation regime 10 is the dominant
behavior of the system. The typical sequence of MMO
states that is observed as Vn is decreased is shown in
Fig. 1b-d, displaying a 11-, 12-, 13-periodic states re-
spectively. At lower values of Vn, a chaotic spiking
regime sets in, where large amplitude oscillations are
separated by an irregular number of small-amplitude
oscillations (see Fig. 1e). Decreasing Vn even further,
the mean inter-spike interval decreases until the large
amplitude spikes disappear and the system undergoes
a sequence of small-amplitude chaotic and periodic at-
tractors eventually reaching a stationary state via a su-
percritical Hopf bifurcation. The transition between
these small-amplitude attractors and the chaotic spik-
ing regime has been investigated in detail in Refs. [Al-
Naimee, Marino, Ciszak, Meucci and Arecchi, 2009;
Marino, Marin, Balle and Piro, 2007].

3 Mixed mode oscillations: theoretical model and
numerical results

The dynamics of LEDs is determined by two coupled
variables (intensity and carrier density) evolving with
very different characteristic time-scales. The introduc-
tion of a third degree of freedom (and a third much



slower time scale) describing the AC-feedback loop,
leads to a 3D system, displaying the multiple time-scale
competition between optical intensity, carriers and the
feedback nonlinear filter function. Since the dynamics
is mainly governed by the AC-feedback loop, the co-
herence proper of a laser does not play any role since
the fast dynamics of the matter-field interaction is adi-
abatically eliminated on such slow time scale. There-
fore the system dependence on the phase of the opti-
cal field can be neglected and what remains is just the
dependence on the output light intensity. In these con-
ditions, experiments in LEDs are equivalent to exper-
iments in semiconductor lasers, but much more eas-
ily controllable. The evolution of the photon density
S and carrier density N is described by the usual rate
equations appropriately modified in order to include the
AC-coupled feedback loop

Ṡ = [g(N − Nt) − γ0]S + γcN

Ṅ =
I0 + fF (I)

eV
− γcN − g(N − Nt)S (1)

İ = −γf I + kṠ

where I is the high-pass filtered feedback current (be-
fore the nonlinear amplifier), fF (I) ≡ AI/(1 + s′I)
is the feedback amplifier function, I0 is the bias cur-
rent, e the electron charge, V is the active layer vol-
ume, g is the differential gain, Nt is the carrier density
at transparency, γ0 and γc are the photon damping and
population relaxation rate, respectively, γf is the cutoff
frequency of the high-pass filter and k is a coefficient
proportional to the photodetector responsivity. For nu-
merical purposes, it is useful to rewrite Eqs. (1) in di-
mensionless form. To this end, we introduce the new
variables x = g

γc

S, y = g
γ0

(N − Nt), w = g
kγc

I − x

and the time scale t′ = γ0t. The rate equations then
become

ẋ = x(y − 1) + γy (2)

ẏ = γ(δ0 − y + f(w + x) − xy) (3)

ẇ = −ε(w + x) (4)

where f(w+x) ≡ α w+x
1+s(w+x) , δ0 = (I0−It)/(Ic−It),

Ic = eV γc(
γ0

g
+ Nt), γ = γc/γ0, ε = ω0/γ0,

α = Ak/(eV γ0) and s = γcs
′k/g. Figure 2 shows

some of these patterns, obtained by numerical integra-
tion of Eqs. (2,4). As the parameter δ0 is decreased,
we observe the complete sequence of transitions going
from the 10-state to the chaotic spiking regime, thus
reproducing qualitatively the experimental results.

4 Noise effects on coupled chaotic systems
Let us consider two bidirectionally coupled LED sys-

tems:

ẋ = f(x, ξy1
) + K(y − x)

ẏ = f(y, ξy2
) + K(x − y) (5)

0

2

4
(a)

0

2

4
(b)

0

2

4

x

(c)

0 10000 20000 30000 40000 50000

0

1

2

3
(d)

0 20000 40000 60000 80000

0

1

2

3

time (arb. units)

(e)

Figure 2. Time-series of the normalized optical intensity x as ob-

tained by numerical integration of Eqs. (2,3,4): a) δ0 = 2.45, b)

δ0 = 2.35, c) δ0 = 2.3 d) δ0 = 2.13, e) δ0 = 2.11. Fixed

parameters: α = 1.007, γ = 0.01, ε = 5× 10−4, s = 0.2.

where x = {x1, y1, w1} and y = {x2, y2, w2} are vec-
tors containing the system variables and K is a cou-
pling matrix. The systems, both in the chaotic spik-
ing regime, are coupled bidirectionally through the bias
current, so we take the matrix K containing only one
non-zero and positive value K. The coupling has been
chosen sufficiently weak in order to avoid chaotic syn-
chronization. Therefore each system follows a differ-
ent chaotic spiking temporal evolution. Independent
noise signals ξy1

and ξy2
are added to the bias cur-

rents of the two systems. Experimental measurements
and numerical simulations, show that the dependence
of the coefficient of variation (CV ) on noise amplitude
D changes its shape. In particular, it appears that the
minimum in CV , corresponding to the maximum co-
herence, decrease depending on the coupling strength
K. The same occurs for stochastic incoherence, which
corresponds to maximum values in CV . In Fig. 3 we
plot CV versus noise intensity obtained experimentally
(Fig. 3 (a-b)) and numerically for two coupled systems
defined(Fig. 3 (c-d)). All this indicate that the coher-
ence of each unit is enhanced by the coupling. On the
other side, the incoherence is worsened.

5 Conclusion
In conclusion, we reported experimental evidence of

complex periodic and chaotic mixed-mode oscillations
in a light-emitting diode with optoelectronic feedback.
The experimental results have been qualitatively repro-
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Figure 3. Experimental measurements of CV versus noise inten-

sity for two light emitting diodes with optoelectronic feedback cou-

pled with: (a) K = 0 (+) and (b) K = 0.09 (o). Numerical

calculations of CV versus noise intensity for the coupling strengths:

(c) K = 10−5 (+) and (d) K = 10−3 (o).

duced by a simple physical model of the system show-
ing that the observed dynamics is the result of canard-
phenomena in a 3D phase-space. We have shown that
the bidirectional coupling of the systems in the chaotic
regime and in the presence of white noise changes the
global system dynamics causing more regular firing
rate. In particular, we have shown that stochastic coher-
ence can be enhanced by coupling, i.e. the minimum
value of CV becomes smaller than that in the case of
uncoupled systems. On the other hand, the stochastic
incoherence is worsened, giving the smaller maximum
of CV . These results reveal that noise amplitude can be
considered as a parameter which controls the collective
dynamics of the systems. The same phenomenology
has been found numerically in a model of our experi-
mental setup.
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