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Abstract
We study the drift of slow variables induced by chaotic

motion of the fast variables in a Hamiltonian system
with two different time-scales. We assume that the fast
system with frozen slow variables has a pair of hyper-
bolic periodic orbits connected by two transversal het-
eroclinic trajectories. We define the class of accessible
paths and show every accessible path is shadowed by
the slow component of a trajectory of the full system.
For any periodic trajectory of the fast subsystem with

the frozen slow variables we define an action. For a
family of periodic orbits, the action is a scalar function
of the slow variables and can itself be considered as a
Hamiltonian function. An accessible path consists of
segments of the corresponding trajectories.
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1 Introduction
We consider a slow-fast Hamiltonian system

described by a smooth Hamiltonian function
H(p, q, v, u; ε), where (p, q) and (εv, u) are pairs
of canonically conjugated variables. Equations of this
type often arise after rescaling a part of the variables
in a standard Hamiltonian system. The corresponding
equations of motion have the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

u̇ = ε
∂H

∂v
, v̇ = −ε∂H

∂u
.

(1)

The variable (p, q) are fast and (v, u) are slow. We
assume that the system has m+ d degrees of freedom,
where m is the number of fast degrees of freedom and
d is the number of slow ones.

At ε = 0 equation (1) takes the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

u̇ = 0 , v̇ = 0 .
(2)

The values of (v, u) remain constant in time and the
system can be interpreted as a family of Hamiltonian
systems with m degrees of freedom which depends on
2d parameters. We call it a frozen fast system.
If m = 1, the frozen fast system typically represents

an oscillator and averaging is used to eliminate the de-
pendence on a fast phase. Then the slow dynamics
is approximated by an autonomous system with d de-
grees of freedom over very long time intervals (see e.g.
[Arnold, 1978; Bogolyubov et al, 1961]). More pre-
cisely, the slow component of a full trajectory stays in
an ε neighbourhood of a trajectory of the following sys-
tem. Suppose the fast space is foliated into periodic or-
bits L(v, u, h), where h stands for the total energy of
the system. An action of the periodic orbit is defined
by the integral

J(v, u, h) :=
∮
L(v,u,h)

p dq . (3)

The function J defines a slow Hamiltonian system in
the (v, u) variables:

u′ =
1
T

∂J

∂v
, v′ = − 1

T

∂J

∂u
, (4)

where ′ stands for the derivative with respect to the slow
time τ = εt and T = T (v, u, h) is the period of L.
System (4) is Hamiltonian with the non-standard sym-
plectic form T dv∧du. Alternatively the equations can
be interpreted as a result of a time scaling in a standard
Hamiltonian system.



If m ≥ 1, the averaging method predicts that the slow
component of the dynamics is described in the leading
order by the vector field

u′ =
〈
∂H

∂v

〉
, v′ = −

〈
∂H

∂u

〉
(5)

obtained by taking an average of the slow component
of (1) over the space of fast variables. Of course, in the
case of m = 1 this system coincides with (4).
The validity of this prediction strongly depends on the

dynamics of the frozen fast system. In particular it was
verified for the frozen fast system which oscillates with
a constant vector of frequencies [Lochak and Meunier,
1988; Neishtadt, 1976]. The averaging can be also used
if the frozen system is uniformly hyperbolic [Anosov,
1960] or, more generally, if the frozen system is er-
godic and the time averages converge sufficiently fast
to space averages [Kifer, 2005].
The averaging method is based on the assumption

that the time average over a trajectory converges to the
space average. In an ergodic system almost every tra-
jectory has this property. On the other hand, it is well
known that ifm > 1 there are trajectories which do not
posses this property. The most remarkable example is
a periodic trajectory. Therefore the slow component of
a trajectory whose fast component stays near a periodic
orbit of the frozen system should strongly deviate from
the averaged dynamics described by (5).
Hyperbolic periodic orbits of the frozen fast system

typically form families parametrised by (v, u, h). This
family forms a normally hyperbolic invariant manifold.
It is well known that normally hyperbolic manifolds
persist under perturbations [Fenichel, 1971]. Conse-
quently the full system has a (2d + 2)-dimensional in-
variant manifold provided ε is sufficiently small. Since
the variables (v, u) are slow, the restriction of the full
dynamics onto this manifold has a single fast degree
of freedom. Therefore it is similar to the case m = 1
described above.
In this paper we assume that the frozen system has

a compact invariant set bearing chaotic dynamics of
horseshoe type created by transversal heteroclinics be-
tween two saddle periodic orbits. This situation typi-
cally arises when a periodic orbit has a transversal ho-
moclinic. In this invariant set hyperbolic periodic orbits
are dense and every two periodic orbits are connected
by a heteroclinic orbit. We select a finite subset of peri-
odic orbits with relatively short periods. We construct
trajectories of the full system which switch between
neighbourhoods of the periodic orbits in a prescribed
way. We show that the slow component of such trajec-
tories drifts in a way quite similar to trajectories of a
random Hamiltonian dynamical system with d degrees
of freedom.
The trajectories constructed in this paper strongly de-

viate from the averaged dynamics. We think this mech-
anism is responsible for the largest possible rates of de-
viation.

A similar construction is used in [Gelfreich and Tu-
raev, 2007] for studying drift of the energy in a Hamil-
tonian system which depends on time explicitly and
slowly. In particular, it was shown in [Gelfreich and
Turaev, 2007] that switching between fast periodic or-
bits indeed provides the fastest rate of energy growth in
several situations.

2 Drift of slow variables
In this section we state our main result. The full details

of the proof can be found in [Brännström and Gelfreich,
2007].
The total energy is preserved, so we study the dynam-

ics on a single energy level. Without any loss in gener-
ality we may consider the dynamics in the zero energy
level

Mε = {H(p, q, v, u; ε) = 0 } .

First we state our assumptions on the dynamics of the
frozen fast system. LetD ⊂ R2d be a bounded domain.
We assume

[A1] the frozen system has two smooth families of hy-
perbolic periodic orbits Lc(v, u) ⊂ M0 defined
for all (v, u) ∈ D, c ∈ { a, b }.

[A2] the frozen system has two smooth families of
transversal heteroclinic orbits: ∀(v, u) ∈ D

Γab(v, u) ⊂ Wu(La(v, u)) ∩W s(Lb(v, u)) ,
Γba(v, u) ⊂ Wu(Lb(v, u)) ∩W s(La(v, u)) .

We note that under these assumptions the frozen sys-
tem has a family of uniformly hyperbolic invariant
transitive sets Λ(v,u), also known as Smale horse-
shoes [Shilnikov et al., 1998]. For every (v, u) ∈ D,
this set contains a countable number of saddle periodic
orbits, which are dense in Λ(v,u). Moreover, every two
periodic orbits in Λ(v,u) are connected by a transver-
sal heteroclinic orbit, which also belongs to Λ(v,u). It
is well known that the dynamics on the Smale horse-
shoe can be described using the language of Symbolic
Dynamics. We define

Λ :=
⋃

(v,u)∈D

Λ(v,u) .

Consider a finite family of periodic orbits in Λ. Let
Jk : D → R denote the corresponding actions and Tk
be their periods, k = 1, . . . , n.
Let Φτk be the Hamiltonian flow with Hamiltonian

function Jk and the symplectic form Ωk = Tkdv ∧ du.
It is defined by the Hamiltonian equations (4) with
J = Jk and T = Tk. For every point z = (v, u) ∈ D
we define

σk(z) = sup{ τ : Φτ
′

k (z) ∈ D for all τ ′ ∈ (0, τ) } ,



which is the time required to leave the domainD. If the
trajectory is defined for all τ > 0 we set σk(z) = +∞.
Obviously, σk(z) > 0 for any z ∈ D and k = 1, . . . , n
due to openness of D.
We say that Γ : [0, T ] → D is an accessible path if

Γ is a piecewise smooth curve composed from a finite
number of forward trajectories of the Hamiltonian sys-
tems generated by Jk.
More formally, Γ is an accessible path if there are 0 =
τ0 < τ1 < · · · < τN = T such that the sequence of
points zi := Γ(τi) breaks the curve Γ into trajectories,
i.e., for every i, 0 ≤ i < N , there is ki, 1 ≤ ki ≤ n,
such that

Γ(τ) = Φτ−τi

ki
(zi)

for τ ∈ [τi, τi+1]. Of course, the curve Γ is well defined
only if

0 < τi+1 − τi < σki
(zi)

which ensures that the trajectories do not leave the do-
main D.

Theorem 1. If D is a bounded domain in R2d, the
frozen fast system satisfies assumptions [A1] and [A2],
{Jk}nk=1 is a set of actions corresponding to a finite set
of frozen periodic orbits in Λ, and Γ is an accessible
path, then there is a constant C0 > 0 and ε0 > 0 such
that for every ε < ε0 there is a trajectory of the full
system (1) such that its slow component z(t) satisfies

‖z(t)− Γ(εt)‖ < C0ε

provided 0 ≤ t ≤ ε−1T .

For any z0, z1 ∈ D, we say that z1 is accessible from
z0 via the system {Jk} if there is an accessible path
such that Γ(0) = z0 and Γ(T ) = z1.
In the case d = 1 the accessibility property has a

simple geometrical meaning since trajectories of the
Hamiltonian systems generated by Jk are level lines of
the functions Jk. In this case the theorem provides tra-
jectories which follow segments of the level lines. The
main obstacle for the drift in the slow space is provided
by level lines common for all Jk.
Consider actions generated by two periodic orbits, a

and b. Those level lines of Ja,b, which are inside D,
are closed curves. The non-singular level lines form
rings (or disks), Da and Db. Let V = Da ∩Db ⊂ D.
If Ja and Jb do not have common level lines, then any
point z1 ∈ V is accessible from any point z0 ∈ V .
Under the same assumptions. Let us take any finite

family of open sets Vi ⊂ V , which do not depend on
ε. Then for all sufficiently small ε, there is a trajectory
which visits all the sets Vi.
We note that this theorem has an obvious generalisa-

tion to the case when the frozen systems have a family

of uniformly hyperbolic invariant subsets such that that
the dynamics on the latter is conjugated to a suspension
of a transitive subshift of finite type.
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