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Abstract
This paper addresses the study of non-holonomic sys-

tems that are written by means of invariant distributions
satisfying the property that the Lie algebra generated
by the distribution is 3-step nilpotent. A system in that
class can be written as an optimal control problem with
a plant that is affine in the control parameters and a
cost which is given by the kinetic energy of the system.
Standard techniques in optimal control theory provide
necessary conditions for the extremal trajectories. The
paper presents a general theory of this class of systems
along with detailed calculations for some low dimen-
sion cases.
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1 Introduction

Classical mechanics is a venerable and broad sub-
ject that includes rigid bodies, fluid mechanics, elas-
ticity, electrodynamics, etc., this body of knowledge
brings together in a beautiful coherent fashion several
branches of mathematics, and lately has incorporated
methods of geometric control theory, see for instance
[Marsden, 1992] and [Bloch, 2003] .
The common wisdom about mechanics starts by the

so-called Lagrangian formalism, introduced by J.L. La-
grange himself around 1790. He considered general-
ized coordinates q and velocities q̇ for describing the
state of a mechanical system, and by taking into con-
sideration the covariance of these quantities, he intro-
duced the Lagrangian of the system L(q, q̇), (kinetic
energy minus the potential energy), and derived what
now are called the Euler-Lagrange equations. Later
on, around 1830, W.R. Hamilton explained how to de-
rive these equations from a variational principle, (the
principle of critical action). In modern language, the

pairs (q, q̇) are the elements of the tangent bundle of
the configuration space, whereas the pairs (q, p), with
p = Lq̇ are the elements of the cotangent bundle. In
these variables, the Hamiltonian function is defined by
H(q, p) = ⟨p, q̇⟩ − L(q, q̇) and the Euler-Lagrange
equations become the so-called Hamiltonian equations
which are endowed with a extremely rich geometric
structure.
In the nineteenth century the German physicist H.R.

Hertz (1857-1894) coined the term holonomic, (from
the Greek roots hólos meaning whole and nomos mean-
ing law), for describing some mechanical systems sub-
ject to velocity constraints. Generally speaking a sys-
tem is said to be non-holonomic with respect to a given
constrained motion, if the system can evolve between
any two given configurations without violating the con-
straints, otherwise is said to be holonomic. A proto-
typical non-holonomic system is the one of a sphere
rolling over the plane without slipping and twisting.
There is a large amount of literature regarding holo-

nomic and non-holonomic constraints for mechani-
cal systems, we refer the reader to the classical book
in classical mechanics [Whittaker, 1988] and also
[Neimark and Fufaev, 1972], both containing plenty of
interesting examples.
To be precise, assume that q = (q1, . . . , qn) denotes

the coordinates of the configuration space of the sys-
tem, and that the evolution of the system obeys to an
ensemble of m linear constraints on the velocities writ-
ten as

∑n
i=1 αij(q)q̇i = 0, j = 1, . . . ,m. If it is

possible to find constraints on the position only, say
β1(q) = · · · = βm(q) = 0, in such a way that,∑n

i=1
∂βj

∂qi
q̇i = 0, j = 1, . . . ,m, determines the

same ensemble of constraints for the system, then it is
said that the constraints are holonomic, otherwise they
are called non-holonomic.
In the control theory literature non-holonomic systems

appear as models of mechanical systems with external
forces, the constraints come up in two flavors: the ones
that are obtained from the derivation of the equations
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of motion from the Euler-Lagrange equations (or from
the Hamiltonian formalism), such constraints are not
imposed on the system and it is better to take them
as conservation laws rather that as genuine constraints;
and those constraints that are direct consequence of the
kinematics, such as the non slipping and twisting of the
rolling, see for instance [Bloch, 2003].
An important class of non-holonomic control systems

is the one of driftless control-affine systems, such sys-
tems are defined either by a finite family of vector fields
or by a Pfaffian system, that is, by the kernel of a finite
family of differential 1-forms.
A relevant example of this class is the so-called Gour-

sat chained form, which provides a model for a robot
towing a finite number of trailers, all of them satisfy-
ing the non slipping and twisting rolling conditions.
If Q denotes the configuration space of this mechani-
cal system, the dynamical equation can be written as
q̇ = u1X1(q) + u2X2(q), q ∈ Q, where u1 and u2

are the control parameters of the velocity of the cen-
ter of mass of the leading robot, and the vector fields
X1 and X2 satisfy the following commuting relations:
[X1, Xi] =: Xi+1, i = 2, . . . , n, with n = dimQ,
(of course n depends on the number of trailers), and
all other commutators are zero, for details see [Tilbury
et al., 1995]. A very interesting variation of this sys-
tem is the kinematic model for a rolling ball towing a
trailer, again satisfying the non slipping and twisting
rolling conditions, this system can also be written as
q̇ = u1X1(q) + u2X2(q) and has been recently intro-
duced in [Boizot and Gauthier, 2013]. An important
feature of the former example is that the Lie algebra
generated by the set of vector fields is already nilpotent,
whereas for the later a nilpotent approximation can be
explicitly calculated as it is done in the aforementioned
reference .
The property of a system of being nilpotent presents

theoretical and computational advantages for tackling
various problems in control: optimal synthesis, path
planning, small time controllability, stability etc. How-
ever it is a very strong condition to impose, in part for
this reason techniques of nilpotent approximations for
control systems have been extensively developed.
In this paper we consider the optimal control prob-

lem of a driftless control-affine system with quadratic
cost, for which the Lie algebra generated by the vec-
tor fields defining the system is 3-step nilpotent, that is,
Lie brackets of length greater that three vanish.
Apart from this introduction the paper contains five

sections, in section 2 we present a characterization of
non-holonomic control systems and the basic defini-
tions of nilpotent Lie algebras and nilpotent approxi-
mations. In section 3 we formulate the optimal control
problem and apply the Pontryagin Maximum Principle
that provides necessary conditions for the optimal con-
trols. In section 4 we specialize the general results to
some low dimensional cases, in particular we discuss
the so-called cross-chained form. At the end in sec-
tion 5 we derive some conclusions and perspectives of

future work on the study of non-holonomic nilpotent
control systems.

2 Non-Holonomic Nilpotent Systems

We present in this section a characterization of non-
holonomic control systems and the basic definitions of
nilpotent Lie algebras and nilpotent approximations.

2.1 Non-Holonomic Control Systems

Let G be a smooth manifold, and let ∆ =
{X1, . . . , Xn} with n < dim(G) be a distribution of
smooth vector fields on G, the Lie algebra generated
by the distribution is denoted as G(∆) and it consists
of the Lie algebra spaned by iterations of all the Lie
brackets of elements of ∆. It is said that the distribu-
tion ∆ is of full rank,1 if for all g ∈ G it holds that
G(∆)g = TgG.
For k = 1, 2, . . ., the modules of vector fields ∆j

are defined inductively as follows: ∆1 := ∆ and
∆k+1 := ∆k + [∆,∆k]. For each g ∈ G, the full rank
condition implies the existence of an integer ν(g) such
that ∆ν(g)

g = TgG, together with a flag of modules of
vector fields naturally defined as

∆1
g ⊂ ∆2

g ⊂ · · · ⊂ ∆ν(g)
g = TgG.

Furthermore if ni(g) = dim∆i
g, i = 1, . . . , ν, then the

vector (n1(g), n2(g), . . . , nν(g)) is called the growth
vector of the distribution ∆ at g, and ν(g) the non-
holonomy degree of the distribution at g. The distri-
bution is said to be regular at g if the growth vector is
constant on a neighborhood of g, it is said to be regular
in G if it is regular for all g with the same degree of
nonholonomy.
Assume that ∆ is a full rank, regular distribution

of vector fields in G, an absolutely continuous curve
g : [0, Tg] → G is said to be admissible for the dis-
tribution ∆ if satisfies ġ(t) ∈ ∆(g(t)), a.e., which is
tantamount of saying that, there is a measurable and
bounded function t 7→ u = (u1, . . . , un) such that g(t)
is an admissible solution of the following control-affine
system:

ġ(t) =

n∑
i=1

uiXi(g(t)), (1)

that we shall call it a non-holonomic control system on
G; the family of all admissible curves is denoted as
A, whereas the one of admissible control parameters is

1This condition goes also in the literature under the names
of bracket generating distribution, Lie algebra rank condition or
Hörmander condition.
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denoted as U . It is known that the full rank condition
guarantees the controllability of the system, see for in-
stance [Jurdjevic, 1997]. A smooth varying inner prod-
uct g 7→ ⟨·, ·⟩g on the vector spaces ∆g can be defined
by means of ⟨Xi, Xj⟩g = δij , in such a way that the
energy functional Λ : A → R+ for admissible curves
is written as follows:

Λ(g,u) =

∫ Tg

0

⟨ġ(t), ġ(t)⟩ =
∫ Tg

0

u2
1+· · ·+u2

n. (2)

In this paper we study the optimal control problem de-
fined by (1) and (2), for the particular case when G(∆)
is a 3-nilpotent and 2-solvable Lie algebra.

2.2 Nilpotent Lie Algebras and Control Systems

In order to set the notation for presenting our results,
we shall digress on some aspects of structure theory
of n−step nilpotent Lie algebras, for more details we
refer the reader to [Jacobson, 1962] and [Corwin and
Greenleaf, 1990].

2.3 Nilpotent and Solvable Lie Algebras

Let g be a Lie algebra over R, the lower central
series is defined follows g := g1 ⊇ [g2, g] ⊇
[g3, g] · · · , where gj := [gj−1, g] for j = 2, 3, . . . The
Lie algebra is said to be nilpotent if there is an integer
n such that gn+1 = 0, if such a n is minimal in the
sense that gn ̸= 0 then the Lie algebra is said to be
n−step nilpotent. The Jacobi identity together with an
elementary induction argument clearly imply

[gi, gj ] ⊆ gi+j ∪ for all i and j. (3)

As a consequence, any product of k elements of g is
an element of gk, independently of the order. Further-
more, g is n−step nilpotent if and only if all brackets of
order greater that n vanish. A typical element x ∈ gk is
the monomial [Xi1 [Xi2 , . . . , [Xik−1

, Xik ] . . .]], with
{Xi1 , Xi2 , . . . , Xik} ⊂ g, the degree of an such ele-
ment is naturally defined as deg(x) = k.
In a similar manner, the derived series of g is de-

fined inductively as follows g ⊇ g(1) ⊇ g(2) · · · ,
with g(1) = [g, g] and g(j) = [g(j−1), g(j−1)] for
j = 2, 3, . . .. The Lie algebra is said to be solvable if
there is an integer m such that g(m) = 0. For then, re-
lation (3) implies g(k) ⊇ g2

k

, for all k, therefore nilpo-
tent Lie algebras are also solvable.
In summary, it can be stated that nilpotency deter-

mines the length of non-trivial Lie monomials whereas
the solvability counts for the shape of the brackets,
for instance, nilpotenty three and solvability two im-
plies that brackets longer than [·, [·, ·]] are zero and
[[·, ·], [·, ·]] are not allowed.

There is a collecting process for organizing the com-
mutators of free Lie algebras generated by a finite num-
ber of elements, that was originally presented by Philip
Hall in [Hall, 1934] and has recently been utilized in
applications to path planning problem and constructive
controllability, see for instance [Laferriere and Suss-
mann, 1992].
Let g be the free Lie algebra generated by the symbols
{X1, . . . , Xp} which are considered of being of degree
one. For two given monomials m1 and m2 the relation
deg[m1,m2] = deg(m1)+deg(m2) readily follows. A
linear combination of monomials of degree k is said to
be homogeneous of degree k, and any element of g is
written as linear combination of monomials.
Since there are only a finite number of monomials of a

given degree, then for each n, a number of monomials,
say mn1 , . . . ,mns , denominated standard monomials,
which are linearly independent and have the property
that each homogeneous expression of degree n is writ-
ten as linear combination of mn1 , . . . ,mns , such a col-
lection is defined recursively as follows:

Definition 2.1. The standard monomials of degree one
are X1, . . . , Xp. Assume that the standard monomi-
als of degree n − 1, are defined, and that they are
≺ −ordered in such a way that u ≺ v provided
deg(u) < deg(v). If deg(x) = i, deg(v) = j and
deg[x, v] = i+ j, then [x, v] is a standard monomial if
and only if satisfies:

1. x and v are standard monomials with x ≺ v.
2. If v = [y, z] then y ≼ x and y ≺ z.

An element of the free Lie algebra g is said to be in
standard form if it is written as linear combination of
standard monomials.

Theorem 2.1. (M. Hall, 1950) The standard monomi-
als form a basis for the free Lie algebra g generated by
X1, . . . , Xp.

Applying this process to a 3-step nilpotent free Lie
algebra generated by {X1, X2, . . .} one has that a basis
is given by

[Xi1 , Xi2 ] = Xi1i2 , i1 < i2,

[Xi12 , Xi1i2 ] = Xi12,i1i2 , i1 < i2 ≤ i12;

[Xi2 , Xi1i12 ] = Xi2,i1i12 , i1 ≤ i2 < i12,

and the remaining elements are again Xi2,i1 = −Xi1,i2

and [Xi1 , Xi2i12 ] = Xi12,i1i2−Xi2,i1i12 , i1 < i2 < i12
with i1, i2, i12 = 1, . . . , n.

Example 2.1. The basis for a 3-step nilpotent free
Lie algebra generated by seven symbols ∆ =
{X1, X2, X12, X112, X212, X6, X7}.
The standard monomials of degree 2, are denoted as
Xij = [Xi, Xj ], i < j. We have then the seven ele-
ments of ∆, and the 21 elements of length two,
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∆12 = {X12, X13, X14, X15, X16, X17},
∆23 = {X23, X24, X25, X26, X27},
∆34 = {X34, X35, X36, X37},
∆45 = {X45, X46, X47},
∆56 = {X56, X57},
∆67 = {X67},

and if we denote as ∆ijk = {[Xi, Xjk | Xjk ∈ ∆jk]},
we further have the following 112 elements of length
three

∆112 ∪∆212 ∪∆312 ∪∆412 ∪∆512 ∪∆612 ∪∆712

∪∆223 ∪∆323 ∪∆423 ∪∆523 ∪∆623 ∪∆723

∪∆334 ∪∆434 ∪∆534 ∪∆634 ∪∆734

∪∆445 ∪∆545 ∪∆645 ∪∆645

∪∆556 ∪∆656 ∪∆756

∪∆667 ∪∆767

2.4 Nilpotent Approximations

A nilpotent approximation of a distribution of vector
fields is another family of vector fields with the same
generic properties that further has the property of gen-
erating a nilpotent Lie algebra. The definition of nilpo-
tent approximations is based on the notion of order
of smooth functions and vector fields, see for instance
[Vendittelli et al., 2004].
Let G be a smooth manifold, and let ∆ =
{X1, . . . , Xn} ( TG be a regular and full rank distri-
bution of vector fields. A smooth function f : G → R
is said to be of order ≥ k at a point g ∈ G, if all its
Lie derivatives, (with respect to vectors Xis) of order
≤ k−1 vanish at g, if is of order ≥ k but is not of order
≥ k + 1 at g, then it is said to be of order k at g.
A vector field X is said to be of order ≥ k at a point
g ∈ G if for every j and every function f of order j at
g, the function X(f) has order ≥ k+ j at g, again if X
is of order ≥ k but is not of order ≥ k+1 at g, then it is
said to be of order k at g. From this definition of order
it is clear that the Xis are of order −1, the brackets
[Xi, Xj ] are of order −2, etc.
A family of vector fields ∆̃ = {X̃1, . . . , X̃n} is said

to be a nilpotent approximation of ∆ at g if

1. The vector fields Xi − X̃i are of positive order at
g

2. The Lie algebra G(∆̃) is κ-step nilpotent, with κ >
ν(g), that is Lie brackets of length greater that κ
vanish.

The explicit computation of nilpotent approximations
for a given distribution is rather technical and is based
on the existence of the so-called privileged coordinates.

There are in the literature various algorithmic processes
for finding nilpotent approximations, see for instance
[Vendittelli et al., 2004], however, those processes are
far from the purposes of this paper. From now on we
shall consider regular full rank distributions that gener-
ate 3-step nilpotent Lie algebras, or distributions that
are 3-step nilpotent approximations of non-nilpotent
ones

3 The Optimal Control Problem

Following the technique of completing the Philip Hall
basis for finitely generated Lie algebras, it has been
shown in [Monroy-Pérez and Anzaldo-Meneses, 2011]
that a 3-step nilpotent, 2-solvable Lie algebra g gener-
ated by a set ∆ of n symbols has dimension at most

η := n︸︷︷︸
∆1

+
(n− 1)n

2︸ ︷︷ ︸
∆2

+
(n− 1)n(n+ 1)

3︸ ︷︷ ︸
∆3

. (4)

The associated Lie group and corresponding group law
can be obtained by standard BCH techniques. It has also
been shown in the aforementioned reference that good
models for this situation are the Lie the subgroups of
Rn × son ×RD where D = (n− 1)n(n+1)/3; in this
case the group law can be written as follows:

g ⊙ h = (α+ β, a+ b+ α ∧ β, ă+ b̆+ Γ), (5)

where

α ∧ β =
1

2
(α⊗ βT − β ⊗ αT ), and

Γ = −1

2
φ(a, α, b, β)− 1

12
ζ(α ∧ β, α, β),

for certain smooth functions φ and ζ.
For the remaining of the paper G shall be taken as

the simply connected Lie group Rn × son × RD of
dimensión η with group law (5), whose Lie algebra g is
the 3-step nilpotent, 2-solvable Lie algebra generated
by a given distribution ∆ = {X1, . . . , Xn} ( TG of
left invariant vector fields on G.
As explained in section 2, the left invariant distribu-

tion ∆ determines on the Lie group G an optimal con-
trol problem, namely: for certain given initial condi-
tions find, among the solutions of (1), the one that min-
imizes the functional (2).

3.1 Hamiltonian Formalism

We approach the aforementioned optimal control
problem by means of the Hamiltonian formalism on the
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cotangent bundle T ∗G and the necessary condition for
optimality given by the Pontryagin Maximum Principle
of optimal control theory, see for instance [Agrachev
and Sachkov, 2004] and [Jurdjevic, 1997]. We sum-
marize in this paragraph the basic notation for the sym-
plectic structure of the cotangent bundle and the Hamil-
tonian formalism.
The differential of the left translation g 7→ Lg on
G, yields the trivialization of the cotangent bundle
T ∗G ≃ G × g∗, in such a way that Hamiltonian func-
tions corresponding to left invariant vector fields on G
are linear functions on g∗. Each left invariant vector
field X on G defines a Hamiltonian function HX on
T ∗G as HX(g, p) = p(X(e)).
The double bundle T (T ∗G) is identified with (G ×
g) × (g∗ × g∗), and with this realization, any tangent
vector ((g,X), (p, Y ∗)) ∈ T (T ∗G), is simply repre-
sented by means of the pair (X,Y ∗) ∈ g× g∗.
The canonical symplectic form on T ∗G ≃ G × g∗,

allows to write, for each Hamiltonian function H
on T ∗G, the corresponding Hamiltonian vector field
H⃗(g, p) = (X(g, p), Y ∗(g, p)) as follows

X(g, p) =
∂H

∂p
(g, p),

Y ∗(g, p) = −dL∗
g

(
∂H

∂g
(g, p)

)
− (ad)∗X(p),

or equivalently, integral curves t 7→ (g(t), p(t)) of the
Hamiltonian vector field H⃗ , satisfy the Hamilton equa-
tions,

dg

dt
= dLg

(
∂H

∂p

)
, and

dp

dt
= −dL∗

g

(
∂H

∂g

)
−

(
(ad)∗

∂H

∂p

)
.

For details on the representation of tangent and cotan-
gent bundles of Lie groups, and the integral curves of
the Hamiltonian lifting of left invariant vector fields,
we refer the reader to V. Jurdjevic’s book [Jurdjevic,
1997].

3.2 Pontryagin Maximum Principle

Following the notation explained in example 2.1, Xij

denotes the Lie bracket [Xi, Xj ] whereas Xijk denotes
[Xi, [Xj , Xk]]. The Hamiltonian functions associated
to the left invariant vector fields Xi, Xij and Xijk shall
be denoted as Hi,Hij and Hijk, respectively. These
Hamiltonians span the dual Lie algebra g∗, endowed
with the Poisson brackets that clearly satisfy the fol-
lowing commuting relations,

{Hi,Hj} = Hij and {Hi,Hjk} = Hijk,

evidently the Lie algebra g∗ is also 3-step nilpotent and
2-solvable.
Each admissible control u = (u1, . . . , un) ∈ U , de-

termines a control dependent Hamiltonian function

Hλ0
u = −λ0

2

[
u2
1 + · · ·+ u2

n

]
+ u1H1 + · · ·+ unHn.

Integral curves t 7→ ξ(t) = (g(t), p(t)) of the corre-
sponding Hamiltonian vector field H⃗λ0

u are called ex-
tremal curves, the ones for λ0 ̸= 0, are called normal,
whereas the ones for λ0 = 0 are called abnormal. The
necessary conditions for Λ−optimal trajectories, i.e.,
solutions of (1) that minimize (2), read as follows:

Theorem 3.1. (Pontryagin Maximum Principle) If a
trajectory t 7→ (g, û) is Λ−optimal then it is the pro-
jection of an extremal curve t 7→ ξ = (g, p), satisfying:

i Hλ0

û (ξ) ≥ Hλ0
v (ξ), for all v ∈ U

ii H0
û(ξ) is not identically zero.

Remark 3.1. Abnormal extremals, are trajectories in-
dependent of the cost functional, they play a very im-
portant role in the geometric analysis of the so-called
optimal synthesis, these extremals deserve a careful
treatment and shall not be discussed here. For the
remaining of the paper we shall consider that all
Λ−optimal trajectories are projections of normal ex-
tremals only.

A direct application of the Pontryagin Maximum Prin-
ciple yields the necessary condition for optimality. Ob-
serve that the dual variable can be expressed in terms of
the dual basis as (h, ω, H̆) ∈ Rn×son×RD, where h =
(H1, . . . , Hn)

T, ω = (Hij)i<j and H̆ = (Υ1, . . . ,Υn)
with Υi the skew-symmetric matrix dual to the ma-
trix Ak = (Xij k)ij which result from the length three
brackets organized according to the Philip Hall process,
for details see [Monroy-Pérez and Anzaldo-Meneses,
2011].

Theorem 3.2. If (g, û) is a Λ−optimal then it is the
projection of an extremal curve (h, ω,Υ1, . . . ,Υn)
along which û = (H1, . . . , Hn) and

ḣ = ω h, (6)

ω̇ =

n∑
i=1

HiΥi (7)

Υ̇i = 0, i = 1 . . . , n. (8)

Proof. The maximality condition implies that along
extremals we have û = (H1, . . . ,Hn), for then the sys-
tem Hamiltonian becomes quadratic

H =
1

2
(H2

1 + · · ·+H2
n). (9)
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A straightforward differentiation (Poisson bracketing
with H), yields

Ḣi = {Hi,H} =
∑
j ̸=i

HiHij , (10)

similarly

Ḣij = {Hij ,H} = −
n∑

k=1

HkHijk, (11)

and finally

Ḣijk = {Hijk,H} = 0, (12)

as required.

Remark 3.2. Equation (12) implies that all the length
three Poisson brackets are constant along extremals,
that is, we have already D integrals of motion.

The coordinates g = (α, a, ă) in G, can be chosen
in such a way that the left invariant vector fields are
written as Xi = ∂αi + · · · . In such a case, we have
α̇i = ui = Hi, and therefore

d

dt

(
Hij +

n∑
k=1

αk Hkij

)
= 0.

We introduce the skew-symmetric constant matrix c
with elements

cij = Hij +
n∑

k=1

αk Hkij .

therefore, from (10)

α̈i −
n∑

j=1

cijα̇j = −
n∑

j,k=1

αk Hkij α̇j ,

that is,

α̈i +
n∑

j,k=1

αkHkijα̇j = 0 (13)

Since the Hkij are constant, these equations are given
in terms of the αi′s only. And together with the non-
holonomic constraints (1), after plugging the optimal
controls given by theorem (3.2), determine completely
the optimal curves.

4 Some Low Dimensional Cases

We discuss here two examples for illustrating the gen-
eral results of the above sections.

4.1 Cartan Lie Algebra n

This case corresponds to n = 2 and η = 5,
and is provided by the rank 2 distribution ∆ =
{X1, X2} for which the only non-zero Lie brack-
ets are X12, X112, X212. The Lie algebra n =
span{X1, X2, X12, X112, X212}, is known as the Car-
tan Lie algebra.
If Hi denotes the left invariant Hamiltonian associated

with the vector field Xi, then we have the non-trivial
Poisson brackets H12,H112,H212.
The corresponding system Hamiltonian writes as fol-
lows

H =
λ0

2
(u2

1 + u2
2) + u1H1 + u2H2 (14)

For the normal case (λ0 = 1), the maximality condi-
tion of the Maximum Principle, readily yield u1 = H1

and u2 = H2, therefore the system Hamiltonian is
quadratic H = H2

1 + H2
2 , and the adjoint system can

be directly written as follows

Ḣ1 =
1

2
{H1,H} = H2H12 (15)

Ḣ2 =
1

2
{H2,H} = −H1H12 (16)

Ḣ12 =
1

2
{H12,H} = −H1H112 −H2H212 (17)

Ḣ112 = Ḣ212 = 0. (18)

H112 and H212 are central elements, and multiplying
third equation by H12, we get

1

2

d

dt

(
H2

12

)
=

d

dt
(H2H112 −H1H212),

therefore we obtain the constant of integration

c2 :=
1

2
H2

12 −H2H112 +H1H212. (19)

Further derivation of (17) yields

Ḧ12 = c2H12 −
1

2
H3

12,

in consequence
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Ḣ12Ḧ12 =

[
1

2

d

dt
(Ḣ12)

2

]
= c2H12Ḣ12 −

1

2
H3

12Ḣ12

= c2

[
1

2

d

dt
(H12)

2

]
− 1

2

[
1

4

d

dt
(H12)

4

]

we obtain then another constant of integration

c3 :=
1

4
H4

12 − c2H
2
12 + (H1H112 +H2H212)

2

Lemma 4.1. The elements of set {H,H112,H212, c2}
are independent first integrals in involution, whereas
K := H2

112 +H2
212 and c3 are neither independent nor

in involution.

Proof. A straightforward calculation shows that
{c2,H1} = {c2,H2} = 0, therefore {c2,H} = 0.
On the contrary we have, {c3,H1} = −2H2H12K and
{c3,H2} = 2H1H12K. Consequently {c3,H} = 0,
but c3 = 2HK− c2 as can be easily shown. �
Thus the trajectories in cotangent space are given by

the intersection of the cylinder H2
1 +H2

2 = 1, with the
parabolic cylinder 1

2H12 − H2H112 + H1H212 = c2.
A simple way to represent this curves is to note that
they can be visualized as curves on the sphere (H1 +
H212)

2 + (H2 −H212)
2 +H2

12 = H+ 2 c2 +H2
112 +

H2
212.

4.2 The Ball and Plate Problem and
Its Nilpotent Approximation

The ball and plate problem has bee studied within
the framework of geometric optimal control theory on
Lie groups in [Jurdjevic, 1993] and [Pop, Aron and
Petrisor, 2011] The non-holonomic control system con-
sisting of a ball rolling on a plane without twisting and
slipping and driven by the another plane can be mod-
elled in the Lie group G = R2 × SO3: the first coordi-
nate of a state (p⃗,M) ∈ G yields the center of the ball,
whereas the second provides the evolution of a moving
frame attached to its center.
It is known that the Lie algebra so3 of skew-symmetric

matrices is isomorphic to R3 with the standard cross-
product, as follows

(x, y, z) ↔ −x(e2 ∧ e3) + y(e1 ∧ e3) +−z(e2 ∧ e3),

where ei ∧ ej = e1 ⊗ ej − ej ⊗ ei, and {e1, e2, e3} is
the canonical base of R3.
If {f1, f2} denotes the canonical basis of R2, then the

5-dimensional Lie algebra R2 × so3, with Lie bracket
[(p⃗,M), (q⃗, N)] = (0, [M,N ]) is isomorphic to R5

with basis A1 = (0, 0, e1), A2 = (0, 0, e2), A3 =
(0, 0, e3), A4 = (f1, 0, 0, 0), A5 = (f2, 0, 0, 0), and
the no-trivial brackets

[A1, A2] = A3, [A1, A3] = −A2, [A2, A3] = A1,

taking into account this notation, the system for the
plate-ball problem is written as

q̇ = u1Y1(q) + u2Y2(q),

where Y1 = A4−A2 and Y2 = A5+A1, that is, a con-
trol affine system defined by an invariant distribution
∆ = {Y1, Y2}
The nilpotent approximation for a system with two

control parameter in 5-dimensional manifold as the one
written before, has been obtained in [Gauthier and Za-
kalyukin, 2007]. In that reference, privileged coordi-
nates (x, y, z, w, v) around a tubular neighborhood of
a non-admissible trajectory are considered, to write the
nilpotent approximation {X1, X2} of ∆ as follows:

X1 =
∂

∂x
+

y

2

∂

∂z
+

y2

2

∂

∂w
+

xy

2
φ(v)

∂

∂v
,

X2 =
∂

∂y
− x

2

∂

∂z
− xy

2

∂

∂w
− x2

2
φ(v)

∂

∂v
.

It can be easily shown that the non-trivial brackets in
this approximation are the following:

X12 = [X1, X2] =
y

2

∂

∂w
− x

2
φ(v)

∂

∂v
,

X112 = [X1, X12] = −φ(v)

2

∂

∂v
,

X212 = [X2, X12] =
1

2

∂

∂w
.

It turns out that the nilpotent approximation yields the
same 3-step nilpotent Lie algebra as the one of Cartan
discussed before.

5 Conclusions

We have studied general properties for optimal tra-
jectories of a problem defined by a driftless non-
holonomic control system and a quadratic cost. We
have considered the case when the Lie algebra gener-
ated by the distribution of vector fields is 3-step and 2-
solvable. We have derived the geometric properties of
the trajectories using the Pontryagin Maximum Prin-
ciple and the associated Hamiltonian formalism. We
have discussed a five dimensional case that models and
interesting non-holonomic mechanical system.
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