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Abstract 

The results of a numerical investigation of dynami-
cal states and bifurcation transitions of a frequency-
phase-feedback oscillator models with an inverted fre-
quency discriminator characteristic are presented in the 
paper. The behavior of the examined models is de-
scribed by nonlinear two- and five-dimensional set of 
differential equations with periodical nonlinearities. It is 
shown that the models demonstrate complex behavior 
including chaotic self-modulation oscillations. Results 
are presented using a two-parameter portrait of motions, 
one-parameter bifurcation diagrams, and phase portraits 
of attractors. 

 
I. Introduction 

In recent years a great interest has been devoted to 
the study of complex dynamics phenomena in the sys-
tems with phase and frequency control. Such systems 
are traditionally intended to provide for and maintain 
the synchronous state, when the phase difference of 
reference and controlled signals becomes constant or, 
equivalently, the frequency difference of these signals is 
equal to zero [1]. The systems may also operate in non-
synchronous modes with variable phase and frequency 
errors. The use of such modes opens wide possibilities 
for some nontraditional engineering and technological 
applications of phase- and frequency-control systems 
(generation of complex periodic and chaotic signals, 
oscillation control, data transmission and processing, 
etc.). 

The purpose of this paper is to present new results 
concerning the nonsynchronous states of system with 
frequency-phase control combining phase-lock (PL) and 
frequency-lock (FL) systems. The system incorporates 
the controlled oscillator with two feedback loops includ-
ing nonlinear discriminators of phase and frequency 
errors, low-frequency filters (LFFs) with transfer func-
tions K1(p) and K2(p), and a frequency modulator. We 
investigate nonlinear dynamics and nonsynchronous 
modes of the frequency-phase lock (FPL) system with 
an inverted frequency discriminator characteristic in two 
cases: when each separate system demonstrates regular 
dynamics and when, the PL subsystem autonomously 
exhibits only regular behavior, whereas an isolated FL 
subsystem may operate in both regular and chaotic non-
synchronous modes. Using frequency discriminator with 
inverted characteristic open new possibilities of forming 

nonsynchronous modes in FPL system, which we would 
like to discuss below. On the basis of qualitative-
numerical analysis, we found the parameter regions cor-
responding to monoharmonic, periodic and chaotic 
automodulation regimes of controlled oscillator. 

 
II. FPL system models under consideration  

Equations describing the dynamics of the considered 
FPL system can be represented in the following operator 
form (p≡d/dt) [2,3]: 

                pϕ+ΩK1(p)F(ϕ)−Ω1K2(p)Φ(pϕ)=δω,          (1) 

where ϕ is the phase difference between the reference 
and controlled signals; F(ϕ) and Φ(pϕ) are the charac-
teristics of phase and frequency discriminators normal-
ized to unity; Ω and Ω1 are the control circuit gains; and 
δω is the initial frequency mistuning. Sign “minus” be-
fore Ω1 corresponds to inverting frequency discrimina-
tor characteristic. Assume that the functions F(ϕ)=sinϕ 
and Φ(pϕ)=2β1pϕ/(1+β1

2(pϕ)2) (β1
–1 is the frequency 

mistuning providing for the maximum value of Φ(pϕ)) 
approximate the phase and frequency discriminator 
characteristics respectively. 

Consider the simplest first-order filters with transfer 
functions K1(p)=1, K2(p)=1/(1+b1p), where b1 is the in-
ertia parameter. Equations (1) may be written in this 
case as 

  dϕ/dτ=η, dη/dτ=γ−sinϕ+bΦ(βλη)−(λ+λ−1cosϕ)η,   (2) 

where τ=(Ω1/b1)1/2t is the dimensionless time, 
λ=1/(Ω1b1)1/2), γ=δω/Ω1, Φ(βλη)=2βλη/(1+β2λ2η2), 
b=Ω2/Ω1, β=β1Ω1. The system (2) is considered on the 
cylindrical phase surface U0={ϕ(mod2π),η}. 

Now consider the first-order filter in PL subsystem 
and third-order filter in FL subsystem with transfer 
functions K1(p)=1/(1+b0p), K2(p)=1/(1+b1p+b2p2+b3p3), 
where b0, b1, b2, and b3 are the inertia parameters. In this 
case, the system of equations is written as 

          dϕ/dτ=u,    du/dτ=z,    dz/dτ=v,    dv/dτ=w, 
  ε1µ2 dw/dτ=γ−sinϕ−bΦ(y)−(1+ε2cosϕ)u−(ε1+ε2+     (3) 
   +µ1cosϕ+bβε1Φ′(y))z−(µ1+µ2cosϕ+ε1ε2)v−  
   −(µ1ε1+µ2)w+µ1u2sinϕ +µ2u3cosϕ +3µ2uzsinϕ, 

where τ=Ωt, ε1=b0Ω1, ε2=b1Ω1, µ1=b2Ω1
2, µ2=b3Ω1

3, 
Φ(y)=2y/(1+y2), Φ′(y)=2(1−y2)/(1+y2)2, y=βu. System 



(3) has the cylindrical phase space U={ϕ(mod 
2π),u,z,v,w}. 

Since systems (2) and (3) are nonlinear, its nonlocal 
investigation encounters serious difficulties. Therefore, 
we apply computer simulation based on qualitative-
numerical methods of analysis of nonlinear dynamical 
systems [4,5] and employ the software developed in [6].  

 
III. Dynamical states of model (2) 

At 0≤γ<1, system (2) has two equilibrium states: 
A1(arcsinγ, 0) and A2(π−arcsinγ, 0). The equilibrium 
state A1 is stable for b<bs and unstable for b>bs, where 
bs=(1+(1−γ2)1/2/λ2)/2β, whereas the equilibrium state A2 
is unstable of saddle type. The stable equilibrium state 
A1 corresponds to synchronous mode of the FPL system. 
The results obtained in [7] show that the system (2) has 
no limit cycles when b≤0, 0≤γ<1, its phase portrait is 
given in Fig.1a. In this case synchronous mode is real-
ized in the FPL system irrespective of initial conditions.  

 

 
Fig. 1. Phase portraits of model (2) for domains 

D1−D5, and C1−C4 
 
Here we consider dynamic processes evolving in 

model (2) for b>0 when parameter γ and b vary and the 
remaining parameters are fixed. Fig.2 shows disposition 
of bifurcation curves on the (γ,b) plane, calculated at 
λ=0.2, β=4.0. Line 1 corresponds to saddle A2 separatrix 
loop Π0 of the first kind that is not encompasses the 
phase cylinder U0. The loop Π0 is unstable as the saddle 
value σ=(2βb−1)λ+(1−γ2)1/2/λ>0. Upon passing throw 
line 1, as b is increased, an unstable oscillatory type 
limit cycle Γ0 such that a phase difference ϕ varies 
within a limited range not exceeding 2π appears on the 
phase cylinder U0.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Dynamic mode domains for model (2) 
 

Line 2 is a stability boundary bs of the equilibrium 
state A1. We investigated the behavior of the model (2) 
at the boundary bs by analyzing the first Lyapunov value 
L=−π{6β2λ2(1−γ2)(λ2+(1−γ2)1/2)−1}/(8λ(1−γ2)3/4). It was 
found that the part bs

− of curve bs above the point M is a 
safe stability boundary (L<0), whereas the part bs

+ of 
curve bs below the point M is unsafe stability boundary 
(L>0). Note, that the point M corresponds to γ=γ0=(1− 
−(1/2+β 2/6−(1/4+β 2/6)1/2)/λ 4)1/2. Therefore, upon pass-
ing through the curve bs

−, as b is increased, a stable os-
cillatory type limit cycle L0 occurs around equilibrium 
state A1 that has become unstable. Cycle L0 corresponds 
to a quasi-synchronous mode in the FPL system when 
periodic oscillations of errors ϕ and η are observed 
around equilibrium state A1. Upon passing through the 
curve bs

+, as b is increased, an unstable limit cycle Γ0 
vanishes transforming into equilibrium state A1. 

Line 3 corresponds to double (saddle-node) limit cy-
cle of oscillatory type. Upon passing through the line 3, 
as b is increased, limit cycles L0 and Γ0 merge and dis-
appear. 

Bifurcation curves 4 and 5 correspond to saddle 
separatrix loops of the second rind (rotatory type): Π − 
in the half phase cylinder η<0 and Π + in the half phase 
cylinder η>0 respectively, that encompass the phase 
cylinder U0. The loop Π + is stable at the part of the 
curve 5 below the point N (where the saddle value σ <0) 
and unstable at the part of the curve 5 above the point N 
(where σ >0). Note, that the point N corresponds to 
γ=γs=(1−λ 4(2β b−1)2)1/2. Therefore, upon passing throw 
the curve 5, if b is increased and γ >γs, a stable rotatory 
type (2π-periodic in ϕ) limit cycle L1 appears in the half 
phase cylinder η>0. Upon passing throw the curve 5, as 
b is decreased and γ <γs, an unstable rotatory type limit 
cycle Γ1 appears in the half phase cylinder η>0. The 
separatrix loop Π − is unstable as σ >0. When, as a re-
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sult of diminishing b, the system (2) crosses line 4, an 
unstable rotatory type limit cycle Γ2 appears in the half 
phase cylinder η<0. 

Lines 6 and 7 correspond to double (saddle-node) 
rotatory type limit cycles in the half phase cylinder η<0 
and η>0 respectively. If, as a result of increasing b, the 
system (2) crosses line 7, a stable rotatory type limit 
cycle L1 and an unstable rotatory type limit cycle Γ1 are 
born in the half phase cylinder η>0. Upon passing throw 
the line 6, as b is increased, a stable rotational limit cy-
cle L2 and an unstable rotational limit cycle Γ2 appears 
in the half phase cylinder η<0. Cycles L1 and L2 are 
associated with the asynchronous modes of the FPL 
system such that phase error ϕ rotates and frequency 
error η periodically oscillate about certain mean value. 

 

 
Fig.3 Phase portraits of model (2) for domains 

C5−C7, D6−D9, and D0  
 

Bifurcation curves 1-7 given at Fig.2 identify vari-
ous parameter domains possessing qualitatively differ-
ent dynamics of the model (2). Fig.1 and Fig.3 show the 
phase portraits of the system (2) for dynamic mode do-
mains represented in Fig.2. For the parameters from 
domain D1 there are no limit cycles and equilibrium 
state A1 is the only attractor (Fig.1a). The trajectories on 
the phase cylinder U0 converge to A1 independently of 
initial state of the system. Therefore, when the values of 
parameters belong to domain D1, the FPL system is in 
synchronous mode irrespective of the initial conditions. 
For the parameters from domains D2,D3,D4,D5,C3, and 
C6 a stable equilibrium state A1 and stable limit cycles 
L1 and L2 are simultaneously exist on the phase cylinder 
U0 (Figs.1b-1e, 1h, and 3b). Depending on initial condi-
tions, synchronous or asynchronous mode correspond-
ing to these attractors develops. When the parameter 

values belong to domains C1, C2,C4,C5,C7,D6,D7, and D8 
quasi-synchronous mode with limit cycle L0 or asyn-
chronous modes with limit cycles L1 and L2 are realized 
in the FPL system (Figs.1f, 1g, 1i, 3a, and 3c-3f). In 
parameter domains D9 and D0 the system exhibits asyn-
chronous modes with limit cycles L1 and L2 (Figs.3g, 
3h). Note, that the regions of attraction of equilibrium 
state A1 and limit cycles L0, L1, and L2 are bounded by 
unstable limit cycles Γ0, Γ1, and Γ2 and of saddle A2 
separatrix on the phase cylinder U0. 

From the results obtained in framework of model (2) 
we show that inverting of the frequency discriminator 
characteristic make possible the appearance in the FPL 
system of periodical auto modulation regimes corre-
sponding to oscillatory and rotatory type limit cycles on 
the phase cylinder U0 which are not possible in partial 
PL and FL systems. 

 
IV. Peculiarities of nonsynchronous modes 

of model (3) 

First, let us analyze the stability of the FPL system 
synchronous mode. The condition under which equilib-
rium state A1(arcsinγ, 0,0,0,0) is stable is determined by 
the following inequalities: 

      c1c2−c3>0,    (c1c2−c3)(c3c4−c3c5)−(c1c4−c5)>0       (4) 

where 

c1=(µ1ε1+µ2)/(µ2ε1),  c2=(ε1ε2+µ1+µ2(1−γ2)1/2)/(µ2ε1), 
c3=(2bβε1+ε1+ε2+µ1(1−γ2)1/2)/(µ2ε1), 

c4=(1+2βb+ε2(1−γ2)1/2)/(µ2ε1),  c5=(1−γ2)1/2/(µ2ε1). 

When conditions (4) are fulfilled, the studied FPL sys-
tem has a synchronous mode corresponding to equilib-
rium state A1. The domain of parameters Cs where con-
ditions (4) are satisfied corresponds to the region where 
the synchronous mode persists. 

Now let us consider the features of model (3) dy-
namical behavior exhibited as it parameters values lie 
beyond domain Cs. To this end, we analyze one-
parameter bifurcation diagrams for the point mapping 
Τϕ of the plane ϕ=ϕ0 into the plane ϕ=ϕ0+2π produced 
by the trajectories of model (3). Fig.4 displays bifurca-
tion diagram {b,u} calculated at the parameter values 
γ=0.1, β=5, ε1=1, ε2=2, µ1=2, µ2=4.5, (ϕ, u) projections 
of the phase portraits, and time realizations u(τ) corre-
sponding to the attractors of model (3). 

The diagram {b,u} (Fig.4a) characterizes evolution 
of quasi-synchronous mode of limit cycle S0 (Fig.4b) as 
parameter b varies from −0.78 to −1.55. It shows trans-
formation of quasi-synchronous mode into asynchro-
nous one. As b is decreases, limit cycle S0 is trans-
formed into chaotic attractor P0 through period doubling 
bifurcations (Figs.4c, 4d). With further decreasing of b, 
attractor P0 is transformed into oscillatory-rotatory type 
chaotic attractor W0 (Figs.4e, 4f). Then alternation of 
the attractor W0 mode and the modes of two-turn (4π-
periodic in ϕ) rotational limit cycles is observed. When 
b<−1.363, the system rigidly switches to the mode of 
one-turn rotational limit cycle L3 (Fig.4g); then, rotatory 



type chaotic attractor W1 forms in the phase space throw 
period-doubling bifurcations of the limit cycle L3 
(Fig.4h). If b continues to decrease, the system passes to 
the oscillation mode with oscillatory-rotatory type cha-
otic attractor W2 via intermittency of chaos-chaos type 
(Figs.4i-4l).  

 

 
Fig. 4. Evolution of the mode of limit cycle S0, observed as b 
increases (a), phase portraits and time realizations that corre-
spond to attractors of system (3) for b=(b) −0.78, (c) −0.87, 
(d) −0.97, (e,f) −0.985, (g) −1.365, (h) −1.43, (i,j) −1.432, 

(k,l) −1.55 

 

Fig. 5. Evolution of the mode of limit cycles L4 and L5, ob-
served as µ2 increases (a), phase portraits, Poincare cross-

section, and time realizations that correspond to attractors of 
system (3) for µ2=(b) 2.36, (c) 2.433, (d) 2.599, 

(e,f,g) 2.61, (h,i,j) 3.7 

The model (3) exhibits such interesting phenomenon 
as formation of rotatory type chaotic attractor character-
ized by irregular switching of a phase variable u. Fig.5a 
represents bifurcation diagram {µ2,u} corresponding to 
γ=0.1, b=−1.5, β=5.75, ε1=10, ε2=1.9, µ1=2. It depicts 
formation of chaotic attractor with a variable u irregular 
switching on the base of rotatory type limit cycle. 
Figs.5b-5i show (ϕ,u) and (z,u) projections of the attrac-
tors’ phase portraits, time realizations u(τ), and (z,u) 
projection of the Poincare cross-section. When µ2=2.36, 
the asynchronous modes of rotational limit cycles L4 
and L5 exist simultaneously (Fig.5b). When µ2 increase, 
chaotic attractor W3 (Fig.5c) appears in the phase space 
through period-doubling bifurcations for cycle L4. Then, 
the system rigidly switches from the mode of attractor 
W3 to the mode of two-turn rotatory type limit cycle L5

2. 
After that, the mode of chaotic attractor W4 (Fig.5d) 
develops as a result of period-doubling bifurcations for 
cycle L5. When µ2>2.5995, the system passes to the 
mode of rotational chaotic attractor V0 with irregular 
variable u switching (Figs.5e, 5f, and 5g). Formation of 
attractor V0 indicates that, in the phase space, there are 
two domains where the system chaotically oscillates and 
irregularly passes from one domain into the other. 
Figs.5h, 5i, and 5j illustrate the character of chaotic at-
tractor V0 observed as µ2 increases. 

 

 
Fig. 6. . Bifurcation diagram {µ1,u} (a), phase portraits, Poin-

care cross-section, and time realization that correspond to 
attractors of system (3) for µ1=(b) 2.17, (c,d) 2.05, 

(e) 1.95, (f) 1.917, (g,h,i,j) 1.8 
 

Numerical simulation shows that model (3) exhibits 
the loss of the stability of oscillatory and rotational limit 
cycles via the bifurcation of generation of stable 2D 
oscillatory or rotatory torus respectively in the phase 
space U when a pair of complex-conjugated cycle mul-
tiplicators crosses a unit circle [5]. Fig.6a represents 
bifurcation diagram {µ1,u} corresponding to γ=0.1, 
b=−1.55, β=5, ε1=1.8, ε2=2.045, µ2=2.35. It character-
izes evolution of asynchronous mode of limit cycle L6 
when µ1 decreases. Figs.6b-6j shows the examples of 
(ϕ,u) and (z,u) projections of attractors’ phase portraits, 
time realization u(τ), and (z,u) projections of the Poin-



care cross-section. When µ1 decreases, first, the mode of 
rotational torus Τ1 (Fig.6c) appears from limit cycle L6 
(Fig.6b). After torus Τ1 is formed, the phase portrait of 
mapping Τϕ (Fig.6d) is characterized by the presence of 
stable closed invariant curve O1. Then there is a “win-
dow” of values of µ1 at the {µ1,u} diagram correspond-
ing to four-turn (8π-periodic in ϕ) rotational limit cycle. 
After this “window” the distortion of the curve O1 is 
observed (Fig.6e). This phenomenon indicates gradual 
transformation the mode of torus Τ1 to the mode of rota-
tory type chaotic attractor W5 (Fig.6f). As µ1 decrease, 
the mode of attractor W5 is transformed into the mode of 
chaotic attractor V1 with irregular switching of variable 
u (Figs.6g-6j). When µ1<1.38, the alternation of chaos-
chaos type and following transition to the mode of oscil-
latory torus Τ0 are observed. With further decreasing of 
µ1 the mode of torus Τ0 mildly transforms into the 
quasi-synchronous mode of oscillatory type limit cycle. 
Therefore, the {µ1,u} diagram (Fig.6a) represents an 
example of the system’s transference from an asynchro-
nous mode to a quasi-synchronous one.  

 
Fig. 7. Poincare cross-section, time realizations, and phase 

portraits corresponding to attractors of system (3) for 
ε1=(a) 1.7, (b) 12.8, (c) 14.3, (d,e) 18.0, (f) 18.2, (g) 22.5, 

(h) 22.8, (i) 26.0, (j) 26.1, (k) 28.5, (l) 28.7, (m,n) 30.7, 
(o,p) 67.3, (q) 75.76 

 
Formation of the mode of chaotic oscillations may 

be realized in the system considered via torus-doubling 
bifurcation also. Let us track the evolution of the mode 
of rotational torus when parameter ε1 is varied. For this 
purpose, we use the numerical simulation of model (3) 
for γ=0.1, b=−1.55, β=5, ε2=2.05, µ1=2.05, µ2=2.35. 
Fig.7 shows (z,u) projections of the Poincare cross-
section, time realizations u(τ), and (ϕ,u) projection of 
the phase portraits corresponding to the system’s attrac-
tors. Let us consider the mode of torus Τ2 corresponding 
to close invariant curve O2 (Fig.7a) as the system’s ini-

tial state. In interval 2.12<ε1<8.87, alternating torus Τ2 
and multi-turn (8π-,10π-,12π-, and 14π-periodic in ϕ) 
rotational limit cycles are observed. When ε1>8.87, pe-
riod-doubling bifurcations of curve O2 adequate to to-
rus-doubling bifurcations occurs (Figs.7b, 7c), and, then 
chaotic attractor V2 appears (Figs.7d, 7e). If ε1 continues 
to grow, the modes of attractor V2 and of complex tori 
corresponding to multi-turn closed invariant curves 
(Figs.7f-7n) alternate. Moreover, it is found that number 
of turns of the closed invariant curves corresponding to 
these complex tori is grow one unit worth in succession; 
the first of these curves corresponds to three-turn torus 
(Fig.7f). In Figs.7f, 7h, 7j, and 7l represent three-, four-, 
five-, and six-turn closed invariant curves. Note, that 
transitions to the chaotic modes are realized via dou-
bling of closed invariant curves. When ε1>49.13, the 
stable rotational limit cycle L7 (Fig.7q) appears in the 
phase space U as a result of saddle-node bifurcation. In 
interval 49.14<ε1<75.51 the mode of chaotic attractor 
and the mode of limit cycle L7 exist simultaneously 
(Figs.7o, 7p, and 7q). A still increase of ε1 leads to rigid 
transition of the system from the mode of chaotic oscil-
lations to the mode of cycle L7 in consequence of clash 
the chaotic attractor and saddle rotational limit cycle in 
the phase space U. 

Note, that described scenario of chaotization via to-
rus-doubling bifurcations is observed in the cases when 
µ2 or b are used as the control parameter. 

 
V. Conclusion 

In this paper we discussed the dynamics peculiarities 
of the FPL system with inverted discriminator charac-
teristic. The obtained results show that such system ex-
hibits a rich variety modes and complex dynamic phe-
nomena: the loss of stability of the synchronous mode, 
appearance of periodic quasi-synchronous modes de-
termined by oscillatory limit cycles of models (2) and 
(3), quasi-periodic quasi-synchronous and asynchronous 
modes corresponding to oscillatory and rotational 2D 
tori in the phase space, and the mode of chaotic oscilla-
tions with phase variable u irregular switching, and a 
transition to a chaotic asynchronous mode via the torus-
doubling bifurcation. The dynamical effects and phe-
nomena in models (2) and (3) are of fundamental impor-
tance for understanding the behavior of the system con-
sidered when the synchronous state is cut off as a result 
of the system parameters perturbation. The results of 
our analysis of the models (2) and (3) allow to make a 
conclusion that the FPL system with inverted frequency 
discriminator characteristic may be regarded as a gen-
erator of periodically and chaotically modulated oscilla-
tions. 
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