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Abstract: Feedback controllers with specific structure arise frequently in applica-
tions because they are easily apprehended by design engineers and facilitate on-
board implementations and re-tuning. This work is dedicated to H∞-synthesis with
structured controllers. In this context, straightforward application of traditional
synthesis techniques fails, which explains why only a few ad-hoc methods have been
developed over the years. In response, we propose a systematic way to design H∞-
optimal controllers with fixed structure using local optimization techniques. We
apply non-smooth optimization techniques to compute locally optimal solutions.
See the paper full version (Apkarian et al., 2007) for more details and applications
discussed at length.
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1. INTRODUCTION

Considerable efforts have been made over the
past two decades to develop new and powerful
control methodologies. H∞ synthesis (Doyle et

al., n.d.) is certainly the most prominent outcome
of this search. In spite of its theoretical success,
it turns out that structured controllers such as
PID, lead-lag, observed-based, and others, are
still preferred in industrial control. The reason
is that controllers designed with modern control
techniques are usually of high order, difficult to
implement and often impossible to re-tune in
case of model changes. But those are precisely
the properties which make structured controllers
so popular for practitioners. Easy to implement
and to understand, and easy to re-tune whenever
performance or stability specifications change.

Structured control design is generally a difficult
problem. Even the simple static output feedback
stabilization problem is known to be NP-hard
(V. Blondel, 1997). Due to their importance for
practice, a number of innovative techniques and
heuristics for structured control have been pro-
posed in the literature. Some authors use branch-
and-bound techniques to construct globally opti-
mal solution to the design problem (Balakrishnan
and Boyd, 1992). In the same vein, Wong and
Bigras (Wong and Bigras, 2003) propose evolu-
tionary optimization to reduce the computational
overhead, while still aiming at globally optimal
solutions. These approaches are certainly of inter-
est for small problems, but quickly succumb when
problems get sizable.



A fairly disparate set of heuristic techniques for
structured control design was developed in the
realm of linear matrix inequalities (LMIs) (Boyd
et al., 1994; Grigoriadis and Skelton, 1996; Ghaoui
and Balakrishnan, 1994; Iwasaki, 1997; Han and
Skelton, 2003; Hassibi et al., 1999). Iterative solv-
ing of SDPs based on successive linearizations is
yet another idea, but often leads to prohibitive
running times. In (Bao et al., 1999), 2 hours
cputime were necessary to compute a decentral-
ized PID controller for a 2 × 2 process on a
Pentium II 333 MHz computer. A relatively rich
literature addresses specific controller structures
such as decentralized or PIDs. In (Miyamoto
and Vinnicombe, 1997), Miyamoto and Vinni-
combe discuss a coordinate scheme for H∞ loop-
shaping with decentralized constraints. In (Tan et

al., 2002), again in the loop shaping context, the
authors adopt a truncation procedure to reduce
a full-order controller to a PID controller. Those
are heuristic procedures, because closed-loop per-
formance is not necessarily inherited by the final
controller. In (Saeki, 2006), sufficient conditions
are given under which PID synthesis reduces to
solving LMIs.

In (Rotkowitz and Lall, 2006), Rotkowitz and Lall
fully characterize a class of problems for which
structured controller design can be solved using
convex programming. See also (Xin et al., 2004)
and the analysis in (Scherer, 2002). Note that
these concepts and tools only apply to particular
problem classes and do not easily lend themselves
to generalization for finer controller structures.

In our opinion local optimization is the approach
best suited for these difficult design problems.
We mention that early approaches to structured
design based on tailored optimization techniques
can be traced back to the work of Mäkilä and
Toivonen (Mäkilä and Toivonen, 1987) for para-
metric LQ problems, or Polak and Wardi (Polak
and Wardi, 1982). More recently, we have used
nonsmooth analysis to fully caracterize the subd-
ifferential properties of closed-loop mappings of
the form ‖.‖∞ ◦ Tw→z acting on the controller
space, where Tw→z(K) denotes the closed-loop
transfer function from w to z at a given controller
K. These results are used to develop nonsmooth
descent algorithms for various design problems
(Apkarian and Noll, 2006b; Apkarian and Noll,
2006d; Apkarian and Noll, 2006c). Here we extend
our results to structured controller design and
elaborate the case of MIMO PID controllers.

We use concepts from nonsmooth analysis covered
by (Clarke, 1983). For a locally Lipschitz function
f : R

n → R, ∂f(x) denotes its Clarke subdifferen-
tial at x.

2. NONSMOOTH H∞ DESIGN

TECHNIQUE

Consider a plant P in state-space form

P (s) :





ẋ

z

y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x

w

u



 , (1)

where x ∈ R
n is the state vector of P , u ∈

R
m2 the vector of control inputs, w ∈ R

m1 the
vector of exogenous inputs, y ∈ R

p2 the vector
of measurements and z ∈ R

p1 the controlled or
performance vector. Without loss, it is assumed
throughout that D22 = 0.

The focus is on H∞ synthesis with structured
controllers, which consists in designing a dynamic
output feedback controller K(s) with feedback law
u = K(s)y for the plant in (1) having the following
properties:

• Controller structure: K(s) has a pre-
scribed structure.

• Internal stability: K(s) stabilizes the orig-
inal plant P (s) in closed-loop.

• Performance: Among all stabilizing con-
trollers with that structure, K(s) minimizes
the H∞ norm ‖Tw→z(K)‖∞. Here Tw→z(K)
denotes the closed-loop transfer function
from w to z.

2.1 Subdifferential of the H∞ map

For the time being we leave apart structural con-
straints and assume that K(s) has the frequency
domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (2)

where k is the order of the controller, and where
the case k = 0 of a static controller K(s) = DK is
included. A further simplification is obtained if we
assume that preliminary dynamic augmentation
of the plant P (s) has been performed:

A →

[
A 0
0 0k

]

, B1 →

[
B1

0

]

, etc.

so that manipulations will involve a static matrix

K :=

[
AK BK

CK DK

]

. (3)

With this proviso, the following closed-loop nota-
tions will be useful:

[
A(K) B(K)
C(K) D(K)

]

:=

[
A B1

C1 D11

]

+

[
B2

D12

]

K [C2 D21 ] .(4)

Owing to its special composite structure, the
function f = ‖.‖∞◦Tw→z, which maps the set D ⊂



R
(m2+k)×(p2+k) of stabilizing controllers into R

+,
is Clarke subdifferentiable (Noll and Apkarian,
2005; Apkarian and Noll, 2006b; Apkarian and
Noll, 2006a). Its Clarke subdifferential can be
described as follows. Introduce the set Ω(K) of
active frequencies at a given K

{ω ∈ [0, +∞] : σ (Tw→z(K, jω)) = f(K)}. (5)

We assume throughout that Ω(K) is a finite set
and we refer the reader to (Bompart et al., 2006)
for a justification of this hypothesis. We shall also
need the notation:
[

Tw→z(K, s) G12(K, s)
G21(K, s) ⋆

]

:=

[
C(K)
C2

]

(sI −A(K))−1

[B(K) B2 ] +

[
D(K) D12

D21 ⋆

]

.
(6)

This leads to the following result

Theorem 2.1. Assume the controller K(s) sta-
bilizes P (s) in (1), that is, K ∈ D. With
the notations (5) and (6), let Qω be a matrix
whose columns form an orthonormal basis of the
eigenspace of Tw→z(K, jω)Tw→z(K, jω)H associ-
ated with the largest eigenvalue λ1

(
Tw→zT

H
w→z

)
.

Then, the Clarke subdifferential of the mapping
f at K ∈ D is the compact and convex set
∂f(K) = {ΦY : Y ∈ S(K)}, where f(K)ΦY =

∑

ω∈Ω(K)

ℜ
{

G21(jω) Tw→z(jω)HQωYω(Qω)HG12(jω)
}T

,(7)

and S(K) is the spectraplex set

S(K) = {Y = (Yω)ω∈Ω(K) : Yω � 0,
∑

ω∈Ω(K)

Tr Yω = 1}.(8)

Proof See (Clarke, 1983) and (Polak and Salcud-
ean, 1989; Apkarian and Noll, 2006b; Apkarian
and Noll, 2006a) for a proof and further details.

In geometric terms, the subdifferential of f is a
linear image of the spectraplex set S(K).

2.2 Structured controllers

Note that we have assumed so far that controllers
have no specific structure. We now extend the
results in section 2.1 to structured controllers
using chain rules.

Assume K defined in (3) depends smoothly on
a free parameter κ ∈ R

q, that is, K = K(κ),
where K(·) is smooth. Then the subgradients
with respect to κ of the mapping g = ‖.‖∞ ◦
Tw→z(.) ◦ K(.) at κ are obtained as K′(κ)∗∂f(K),
where ∂f(K) is given in Theorem 2.1, K′(κ) is
the derivative of K() at κ, and where K′(κ)∗ is
its adjoint. This is a direct application of the

chain rule in (Clarke, 1983). Note that the adjoint
K′(κ)∗ acts on elements F ∈ R

(m2+k)×(p2+k) via

K′(κ)∗F =
[

Tr (∂K(κ)
∂κ1

T
F ), . . . , Tr (∂K(κ)

∂κq

T
F )
]T

.

We infer the following

Corollary 2.2. Assume the controller K(κ) stabi-
lizes P (s) in (1), that is, K(κ) ∈ D. With the
notations of Theorem 2.1, the Clarke subdifferen-
tial of the mapping g = ‖.‖∞ ◦ Tw→z(.) ◦ K(.) at
κ ∈ R

q is the compact and convex set ∂g(κ) =
{[

Tr ( ∂K
∂κ1

T
ΦY ), . . . , Tr ( ∂K

∂κq

T
ΦY )

]T
: ΦY ∈ ∂f(K)

}

.(9)

Using vectorization, the subgradients in (9) can
be rewritten as

[

vec ∂K(κ)
∂κ1

, . . . , vec ∂K(κ)
∂κq

]T

vecΦY . (10)

An important special case in practice is when
the maximum singular values σ(Tw→z(K(κ), jω))
have multiplicity one for every ω ∈ Ω(K(κ)). Then
the subgradients ΦY reduce in vector form to
vecΦY = Ψ ξ where

∑

ω∈Ω(K(κ)) ξω = 1, ξω ≥

0, ∀ω ∈ Ω(K(κ)) and matrix Ψ is constructed
columnwise as Ψ :=
(

vecℜ
{

G21(ω) Tw→z(jω)HQω(Qω)HG12(jω)
}T
)

ω∈Ω
.

Combining this expression with (10), the subd-
ifferential ∂g(κ) at κ admits a simpler represen-
tation in the form of a linear image of a simplex,
∂g(κ) =
{[

vec ∂K(κ)
∂κ1

, . . . , vec ∂K(κ)
∂κq

]T

Ψξ, ξ ∈ simplex

}

.

2.3 PID controllers

If this section we specialize the above results
to PID controllers. A common representation of
MIMO PID controllers is

K(s) = Kp +
Ki

s
+

Kds

1 + ǫs
, (11)

where Kp, Ki and Kd are the proportional, the
integral and the derivative gains, respectively. The
PID gains Kp, Ki and Kd all belong to R

m2×m2

for a square plant with m2 inputs and outputs. ǫ is
a small scalar which determines how close the last
term in (11) comes to a pure derivative action.
Using partial fraction expansion, an alternative
representation can be obtained in the form

K(s) = DK +
Ri

s
+

Rd

s + τ
, (12)

with the correspondence

DK := Kp +
Kd

ǫ
, Ri := Ki, Rd := −

Kd

ǫ2
, τ :=

1

ǫ
.



Note that these two representations are in one-to-
one correspondence via

Kd = −ǫ2Rd, Kp = DK + ǫRd, Ki = Ri, ǫ =
1

τ
.

From (12) we obtain a linearly parameterized
state-space representation of a MIMO PID con-
troller

K =

[
AK BK

CK DK

]

=





0 0 Ri

0 −τI Rd

I I DK



 . (13)

Since the state-space representation of the PID
controller is affine in the parameters τ , Ri, Rd

and Dk, the same is true for its vectorized form
and we can write

vec

[

AK BK

CK DK

]

= vec

[
0 0 0
0 0 0

I I 0

]

+ T

κ
︷ ︸︸ ︷





τ

vec Ri

vec Rd

vec DK




 ,

for a suitable matrix T ∈ R
(k+m2)(k+p2)×(3m2

2+1).
The subdifferential of the mapping g = ‖.‖∞ ◦
Tw→z(.)◦K(.) at κ, where K(κ) describes a MIMO
PID controller (11) or (12) above, is the compact
and convex set of subgradients

∂g(κ) =
{
T T vecΦY : ΦY ∈ ∂f(K(κ))

}
. (14)

Note that the outlined procedure to describe sub-
differentials is easily extended to decentralized
MIMO PID controllers as well as to any controller
structure of practical interest.

2.4 Setpoint filter design

When PID feedback alone is not sufficient to
achieve suitable performance, prefilters or set-
point filters must be introduced. In figure 1, a
typical model following strategy is shown. The
setpoint filter F (s) is used in such a way that the
responses of the feedback controlled plant G(s)
match as closely as possible those of a reference
model Gref (s). Finding such a filter could also
be cast as an H∞ synthesis problem, where the
transfer function from the reference signal r to
the tracking error e is minimized:

minimize
F (s)

‖Tr→e(F )‖∞ . (15)

+

e−

r
F (s)

Gref (s)

K(s)
+

−
G(s)

Fig. 1. setpoint filter design

To solve the setpoint filter design problem, we
suggest once again the use of nonsmooth optimiza-
tion methods. In order to illustrate the construc-
tion, consider the case of a two-input two-outputs
system. To achieve decoupling and good quality
responses, the setpoint filter is sought in the form
(Tan et al., 2002),

F (s) =






1

τ1s + 1

a1s

b1s + 1
a2s

b2s + 1

1

τ2s + 1




 . (16)

Setting

κ1 =
1

τ1
, κ2 =

1

b1
, κ3 =

a1

b1
,

κ4 =
1

τ2
, κ5 =

1

b2
, κ6 =

a2

b2
,

a state-space representation of the filter is ob-
tained as

F(κ) :=

[

AF BF

CF DF

]

=









−κ1 0 0 0 κ1 0
0 −κ2 0 0 0 −κ3

0 0 −κ4 0 0 κ4

0 0 0 −κ5 −κ6 0

1 κ2 0 0 0 κ3

0 0 1 κ5 κ6 0









.

This means there exists a matrix U such that

vecF(κ) = vecF(0) + Uκ, κ ∈ R
6 .

We immediately deduce the relevant subgradient
formulas for program (15). With v := ‖.‖∞ ◦
Tr→e(.) ◦F(.), the subdifferential of v at κ, where
F(κ) is a setpoint filter, is the compact and convex
set of subgradients ∂v(κ) =
{
UT vecΦY : ΦY ∈ ∂ (‖.‖∞ ◦ Tr→e) (F(κ))

}
.(17)

The remaining expression for the subdifferential
is directly obtained from Theorem 2.1.

2.5 Nonsmooth descent method

For a more detailed discussion we refer the reader
to (Apkarian and Noll, 2006b; Apkarian and Noll,
2006d). We start by representing the composite
functions f = ‖ · ‖∞ ◦ Tw→z or more generally
g = ‖ · ‖∞ ◦ Tw→z ◦ K(·) under the form

g(κ) = max
ω∈[0,+∞]

g(κ, ω),

where each g(κ, ω) is a composite maximum sin-
gular value function

g(κ, ω) = σ (G(κ, jω)) .

Here G(κ, jω) = Tw→z (K(κ), jω). At a given
parameter κ, we can compute the set Ω(κ) :=
Ω (K(κ)) of active frequencies, which is either fi-
nite, or coincides with [0, +∞] in those rare cases



where the closed-loop system is all-pass. Exclud-
ing this case, we assume Ω(κ) finite and construct
a finite extension Ωe(κ) by adding frequencies
according to the strategy presented in (Apkarian
and Noll, 2006b; Apkarian and Noll, 2006d).

Following the general trend of Polak (Polak,
1997), we now define the optimality function
θe(κ) := minh∈Rq maxω∈Ωe(κ) maxYω�0,Tr(Yω)=1

−g(κ) + g(κ, ω) + hT φYω
+ 1

2hT Qh, (18)

where for every fixed ω, φYω
is a subgradient of

g(κ, ω) at κ obtained as φYω
:=

[

Tr (∂K(κ)
∂κ1

T
ΦYω

), . . . , Tr (∂K(κ)
∂κq

T
ΦYω

)
]T

,

where g(κ, ω)ΦYω
= ℜG21(jω)Tw→z(jω)H×

QωYω(Qω)HG12(jω) , Yω � 0, TrYω = 1.

The model of the objective function represented
by θe is in principle of first order, but the
quadratic term hT Qh may in some cases be used
to include second order information. In (Apkarian
and Noll, 2006b; Apkarian and Noll, 2006d) we
had worked with the basic choice Q = δI ≻ 0, but
we shall propose a more sophisticated choice here
using BFGS updates.

Notice that independently of the choices of Q ≻ 0
and the finite extension Ωe(κ) of Ω(κ) used, the
optimality function has the following property:
θe(κ) ≤ 0, and θe(κ) = 0 if and only if 0 ∈ ∂g(κ),
that is, κ is a critical point of g. In order to use
θe to compute descent steps, it is convenient to
obtain a dual representation of θe. To do this we
use Fenchel duality to swap the max and min
operators in (18). This means that we first replace
the first inner supremum by a supremum over a
convex hull which does not alter the value of θe.
Then, after swapping max and min, the now inner
infimum over h ∈ R

q becomes unconstrained and
can be computed explicitely. Namely, for fixed
Yω and τω in the outer program, we obtain the
solution of the form

h(Y, τ) = −Q−1




∑

ω∈Ωe(κ)

τωφYω



 . (19)

Substituting this back we obtain the dual expres-
sion

θe(κ) = max
τω≥0,

∑

ω∈Ωe(κ)

τω=1

max
Yω�0, Tr(Yω)=1

∑

ω∈Ωe(κ)

τω ×

(g(κ, ω) − g(κ))

− 1
2

(

∑

ω∈Ωe(κ)

τωφYω

)T

Q−1

(

∑

ω∈Ωe(κ)

τωφYω

)

.(20)

Notice that in its dual form, computing θe(κ)
leads to a semidefinite program. Indeed, substi-
tuting Zω = τωYω, program (20) becomes

θe(κ) = max
Zω�0,

∑

ω∈Ωe(κ)

Tr(Zω)=1

∑

ω∈Ωe(κ)

Tr(Zω) ×

(g(κ, ω) − g(κ))

− 1
2

(

∑

ω∈Ωe(κ)

φZω

)T

Q−1

(

∑

ω∈Ωe(κ)

φZω

)

. (21)

The latter program is converted to an LMI prob-
lem using a Schur complement argument. As a
byproduct we see that θe(κ) ≤ 0 and that θe(κ) =
0 implies κ is critical that is, 0 ∈ ∂g(κ).

What is important is that the direction h(Y, τ) =
h(Z) in (19) is a descent direction of g at κ in the
sense that the directional derivative satisfies the
decrease condition

g′ (κ; h(Z)) ≤ θe(κ) − 1
2

(

∑

ω∈Ωe(κ)

φZω

)

Q−1

(

∑

ω∈Ωe(κ)

φZω

)

,

where Z is the dual optimal solution. See (Apkarian
and Noll, 2006d, Lemma 4.3) for a proof. In
conclusion, we obtain the following algorithmic
scheme:

Set Parameters 0 < α < 1, 0 < β < 1, 0 < δ ≪ 1.
1. Initilization. Find a structured closed-loop
stabilizing controller K(κ).
2. Active frequencies. Compute g(κ) using the
algorithm of (Boyd and Balakrishnan, 1990) in its
refined version (Bompart et al., 2006) and obtain
set of active frequencies Ω(κ).
3. Add frequencies. Build finite extension Ωe(κ)
of Ω(κ) as proposed in (Apkarian and Noll, 2006b;
Apkarian and Noll, 2006d), and choose Q � δI.
4. Step computation. Compute θe(κ) by the
dual SDP (20) and thereby obtain direction h(Z)
in (19). If θe(κ) = 0 stop. Otherwise:
5. Line search. Find largest t = βk such that
g(κ + th(Z)) < g(κ) − αtθe(κ) and such that
K(κ + th(Z)) remains stabilizing.
6. Step. Replace κ by κ + th(Z) and go back to
step 2.

Notice that the line search in step 5 is successful
because t−1 (g(κ + th(Z)) − g(κ)) → g′(κ; h(Z))
as t → 0+, and because θe(κ) < 0 and 0 < α < 1.
Choosing t under the form t = βk with the largest
possible k comes down to doing a backtracking
line search, which safeguards against taking too
small steps.

The reader is referred to the full version (Apkarian
et al., 2007) to see how matrix Q is computed to
incorporate second-order information. Finally, we
emphasize the important fact that when singular
values σ (G(κ, jω)) are simple on Ωe(κ), which is



the rule in practice, we have Zω = TrZω so that
SDP (21) simplifies to a much faster convex QP.

3. CONCLUSION

We have presented and discussed a nonsmooth
optimization technique for the synthesis of finely
structured controllers with an H∞ objective. Our
approach is general and encompasses most con-
troller structures and is endowed by a tractable
convergence certificate.
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