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Abstract
In current work we study collective dynamics of

lowdimensional chain of unidirectionally coupled
phase-locking systems. The existence conditions of
synchronous regimes are obtained. For such values of
control parameters, when there is no fixed points in the
phase space, the asynchronous autooscillatory regimes
and transitions between them are researched. It was
discovered that the chain withn + 1 elements inherits
the structure of parameter space of chain withn ele-
ments.
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1 Introduction
Mathematical models of coupled phase-locking sys-

tems ensemble are of great interest as a main theoreti-
cal tool for investigating the dynamics of various multi-
elemental oscillatory systems for various applications,
e.g. phased antenna arrays, frequency etalon cascades,
communication networks, electrical grids [Kapranov
et. al., 1984; Afraimovich et. al., 1995] etc. Re-
cently the interest to this subject have noticeably in-
creased due to appearance of new problems of coher-
ent power summation [Mishagin and Shalfeev, 2006;
Brignon, 2013], neuron networks researches [Matrosov
et. al., 2013], Kuramoto oscillator ensembles [Abrams
and Strogatz, 2006], social and economical dynamic
models [Osipov, Kurths and Zhou, 2007]. On the one
hand intense researchers interest in phase-locking sys-
tem ensemble analysis relates to comparably simple
dynamics of individual elements. On the other hand
this interest is related to the possibility of coupling such
elements into a networks with various configuration in
order to investigate the collective dynamics of oscilla-
tory systems (emergence of complex dynamics, forma-
tion and evolution of structures etc.)

Series of publications are devoted to the research of
phase systems collective dynamics (phase-locking sys-
tems) [Kapranov et. al., 1984; Afraimovich et. al.,
1995; Osipov, Kurths and Zhou, 2007]. Most of this
investigations concerned the existence problems of the
stable phase-locking regimes for the elements in chain
or lattice oscillatory ensembles. It is worth mentioning,
that due to significant difficulties in analytical treat-
ment in this articles simplified models are turned to ac-
count, which assuming chain- or lattice-like topology
of the ensemble and, generally, the uniformity of the
elements.
Exploration could be much simpler if one consider the

ensemble with low number of elements – asmall en-
semble. Such models are of interest by itself and as
an extreme case of the large ensembles. Research of
small ensembles by means of nonlinear dynamics in
the combination with numerical analysis allows to ob-
tain sufficiently complete description of the collective
dynamics in such ensembles. Analysis of existing arti-
cles demonstrates, that despite of the attractiveness of
small ensemble models, the dynamics of such systems
is insufficiently studied in comparison with the dynam-
ics of Kuramoto oscillator ensembles [Strogatz, 2000].
In this sense the most intension of this research is the
study of the small ensemble of coupled phase-locking
systems dynamics.
The main goal of this work – is the investigation of the

synchronous and asynchronous autooscillatory regimes
in the elements of lowdimensional chain of unidirec-
tionally coupled phase-locking systems and localisa-
tion of the regions in the parameter space that response
to a qualitatively different dynamical regimes.

2 Basic model
Consider the multichannel system (Fig. 1) that con-

tains the chain of phase-locking loops(PLL) , coupled
in the way thati-th generator(G) is driven by both the
signal fromi-th andi− 1-th phase discriminators(PD)
(see Fig. 1). For the simplified analysis there were
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Figure 1. General model of unidirectionally coupled PLLs. Here

S0(t) – reference signal,Sn
n(t) – n-th PLL output signal,Gn –

controllable generator,Fn – frequency filter,CEn – control ele-

ment,PDn – phase discriminator,Φn,n−1 – signal from(n−1)-
th phase discriminator (normed),dn,n−1 – coupling parameter,Σ
– summator.

made following assumptions: 1) all PLL-s are identi-
cal; 2) there is no filter in the control circuit; 3) char-
acteristic function of phase discriminator is sinusoidal.
Thus using assumptions above the mathematical model
of the ensemble is like follows:

{

dϕ1

dτ
= γ − sinϕ1,

dϕn

dτ
= γ − sinϕn − δ sinϕn−1, n = 2, N,

(1)

where∀n = 1, N phase variableϕn = θ0 − θn – is the
phase difference betweenn-th generator and the refer-
ence signal,γ - arbitrary parameter characterizing the
initial frequency detuning,δ – arbitrary coupling pa-
rameter.

3 Dynamical regimes
Partial element of the chain could function in the fol-

lowing regimes [Osipov, Kurths and Zhou, 2007]:Syn-
chronous regime of the element‘s generator and the ref-
erence signal, such that their frequencies are equal;
Quazysynchronous regime such that reference signal
and generator frequencies are equal on the average and
on the output from the PLL one can observe the oscil-
lations with the angular modulation of the mean fre-
quency stabilized by the frequency of reference sig-
nal; Asynchronous regime takes place if average fre-
quency difference is not equal to zero and absolute
value of phase difference between generator and ref-
erence signal infinitely increases. In the phase space

Figure 2. Synchronous regimes of the system (1).CN
S – region in

parameter space, where synchronization of N-elemental chain takes

place.C∞

S – region of global synchronization.

of the partial system synchronous regime corresponds
to a single point, quazisinchronous and asynchronous
regimes correspond to finite and infinite trajectories ac-
cordingly.
Considering dynamics of the ensemble as a complex

of elements with individual dynamics, one can deter-
mine [Afraimovich et. al., 1995]globally synchronous
regime, such that all the partial systems are in syn-
chronous regime;partially synchronous regime – only
part of the oscillators are in synchronous regime. Par-
tially synchronous regime could be divided into par-
tially synchronized regimes with more delicate struc-
ture, for instance regimes taking to account number of
synchronized elements and also their distribution over
the space of the chain. If there is no synchronized el-
ements, at the first place will be analysed number of
quazisynchronous elements and their distribution over
the space of the ensemble, besides there is an individ-
ual interest in partition of the oscillations to regular and
chaotic and transformations of this oscillations from el-
ement to element as well.

4 Synchronization
Exploration of the global synchronization regime re-

duces to the analysis of the fixed points of the model (1)
– to exploring the stable equilibrium points and defin-
ing regions of parameters where this points exist.
On Fig. 2 regions of existence of equilibrium points

of the model (1)CN
S are presented for number of ele-

mentsN = 2, 3, 4, 5, 6, 7, 8. With values of parame-
ters from this regions corresponding chain is globally
stable and all the elements are synchronized with the
reference signal. Area ofCN

S decreases over increas-



ing N and withN → ∞ regionCN
S degenerate into

C∞

S = {γ − 1 < δ < 1, γ < 1}. Whenγ > 1 syn-
chronous regimes are absent. The boundaries ofCN

S

are smooth for oddN > 2 and for evenN from re-
gionδ < 0. BoundariesCN

S in regionδ > 0 for even N
have fractures in the pointsa(δ∗, γ∗=1−δ∗), whereδ∗

is the solution ofδN−1 − 2
[

∑N−2

i=0
(−δ)i

]

= 0, N =

4, 6, 8, .... BoundariesCN−1

S andCN
S to the right of

pointsa are identical.

5 Asynchronous regimes
Lets consider the uniform chain containing two ele-

ments. The dynamical processes of this chain are gov-
erned by the system of two first equations from (1):

{

dϕ1

dτ
= γ − sinϕ1,

dϕ2

dτ
= γ − sinϕ2 − δ sinϕ1.

(2)

Right hand sides of this system are2π-periodical
functions with both phase coordinatesϕ1 ϕ2, so the
phase space of this system is twodimensional torus sur-
face:T2 = {ϕ1(mod2π), ϕ2(mod2π)}. Possible limit
sets of the system (2) are equilibrium points, homo-
clinic orbits and limit cycles. Due to the topology of
phase space limit cycles could be of two types:1-st
type limit cycle that envelope equilibrium points and
2-nd type limit cycles that envelope phase torus in the
direction of the parallel and (or) meridian. Features of
trajectory behavior are determined by the rotation num-
ber [Pliss, 1966]:

ν1 = lim
ϕ1→+∞

Φ(ϕ1, ϕ
0
2)

ϕ1

,

whereΦ(ϕ1, ϕ
0
2) is the solution of the equation (2). In-

tegral trajectories are closed or unclosed depending on
the rationality or irrationality of the rotation number.
First equation from (2) solvable analytically and for

different values of parameterγ solution behaves in a
different way: withγ ≤ 1 solution converges to the
stationary stateϕ∗

1 = arcsin γ; with γ > 1 solution

ϕ1(τ) = 2 arctan

[

γ − 1
√

γ2 − 1

× tan

√

γ2 − 1

2
(τ + τ0)

]

infinitely grows on the equivalence class[−π, π) [Ka-
tok, 1995] for allτ0 and with continuous increasing of
τ . All solutions of the first equation from (2) can not
be both oscillatory and bounded so there is no1-st type
limit cycles in the (2) phase space.
Starting with γ ≤ 1 and considering stationary

regimes it can be shown, that the second equation re-
duces to a topological analog of the first equation:
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Figure 3. The parameter space(γ, δ) of model (2). In the region

γ > 1 gray subregions correspond to periodic solutions with rota-

tion number noted in square brackets, white subregions correspond

to a quaziperiodic solutions. Region with square hatching contains

numerable number of subregions corresponding to periodic solutions

separated with the numerable number of subregions corresponding to

quaziperiodic solutions. Note that whenγ → 1+0 second rotation

number decreases infinitely.

ϕ̇2 = γ2 − sinϕ2, whereγ2 = γ − δγ = const and
thus all the dynamics depends on the values ofγ2 and
described above.
If γ > 1 then ϕ̇2 is modulated byϕ1 and dynam-

ics becomes much complex. Bifurcational analysis of
the system (2) is presented on the Fig. 3. On this fig-
ure with the parameter from regions marked with[i, j]
system (2) have the only attractor – limit cycle that en-
velopes the phase torusi times over the meridian and
j times over the parallel. Crossing of the boundary of
the gray region always leads to a saddle-node bifurca-
tion of the limit cycle except the case of crossing the
boundary(γ = 1, 0 ≤ δ ≤ 2) – in this case crossing
goes with the conjunction of the limit cycle and homo-
clinic trajectory.
Details of the region marked with square hatching dis-

played on the Fig. 4. Points on the figure are obtained
as a trajectory points of the descrete map on the secant
ϕ2 = −π, generated by the trajectories of the twodi-
mensional system. Due to complexity of the limit cycle
form there exist set of points where trajectory intersects
the secant and for any of this point there is always one
point where trajectory intersects the secant in opposite
direction – that is why on the diagram appear curvesl+

andl−.
With increasing number of elements in the chain of

PLL structure of model (1) parameter space becomes
more complex, but the model of dimensionN inherits
the structure of parameter space from the model of di-
mensionN − 1. Lets consider the transformations of
the fragments from parameter space, determined by the
increase ofN on the example of the transition between
model (2) to (1) withN = 3.
Model (1) in the case ofN = 3 takes the following
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Figure 4. One-parameter bifurcation diagram forδ = 4.5 on the

secantφ2 = −π. Second rotation number grows infinitely when

γ → 1 + 0. Curvesl− andl+ appear due to a complex structure

of the corresponding limit cycle.

form:







dϕ1

dτ
= γ − sinϕ1,

dϕ2

dτ
= γ − sinϕ2 − δ sinϕ1,

dϕ3

dτ
= γ − sinϕ3 − δ sinϕ2.

(3)

This model is determined on the three-
dimensional phase torusT3 = {ϕ1(mod2π),
ϕ2(mod2π),ϕ3(mod2π)}. Similarly with the caseT2

we will designate trajectories inT3 with three numbers
[i, j, k]. Due to unidirectional type of couplingi and
j are inherited from the trajectories of the system (2)
and remain unchanged. The rotation numbersν1 and
ν2, where

ν2 = lim
ϕ2→+∞

Φ(ϕ2, ϕ
0
3)

ϕ2

,

will be used to characterize the solutions on theT3.
Trajectories will be closed ifν1 andν2 are rational, oth-
erwise trajectories will be unclosed. Consequently fol-
lows the conclusion that periodic orbits for model (3)
could exist only when parameters are chosen from the
regions of existence of periodic orbits and synchronous
regimes of model (2).
The transition between parameter space of the ensem-

ble with N = 2 to parameter space of the ensemble
with N = 3 demonstrated on Fig. 5. Gray regions
from the parameter space forN = 2 now divided in the
same manner on subregions of periodic solutions sep-
arated by the subregions corresponding to a quaziperi-
odic solutions. White quaziperiodic regions remain un-
changed. Square hatching marks the same regions as it
was for the case ofN = 2 with according modifica-
tions.

6 Arbitrary length chain features
Consider the chain with arbitrary dimension that func-

tions in partial synchronization regime. In such chain
all possible dynamical regimes of partial elements are
presented. Firstn∗ elements function in synchro-
nization regime,PLLn∗+1 functions in asynchronous
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Figure 5. Evolution of the parameter space of the system (1) in the

transition fromN = 2 toN = 3. The ”*”-symbol designates the

regime of quazisynchronous dynamics ofϕ3.

regime whereϕn∗+1 evolution could be found analyt-
ically. Oscillations of consequent elements could be
quaziperiodic or periodic, simple or complex. Form
of oscillations would depend on the element numbern

and model parametersγ andδ.
Oscillatoins inPLLn are governed by the equation:

dϕn

dτ
= γ − sinϕn − δ sinϕn−1, (4)

and could be only regular. Chaotic dynamics could
appear whenϕn−1 changes chaotically, but the chain
structure prevents this. Forn < n∗ the variableϕn−1

is constant. Forn = n∗ + 1 equation (4), using an-
alytical solution, transforms to a nonautonomous first
order equation with regular dynamics. In this case dy-
namics of (4) is the same to the dynamics of the first
element of the chain withγ > 1. Forn = n∗ + 2 the
equation (4) is the first order dynamical system under
external regular impact. In this case the dynamics of



model (4) is the same as the dynamics of (2) and is reg-
ular. Consequent analysis of elements to the end of the
chain demonstrates that oscillations of everyn-th ele-
ment∀n > 1 is regular (due to regularity ofϕn−1),
thus chaotic oscillations are not possible in the model
(1).

7 Summary
In current work the results of the research of phase

synchronization systems chain model for all real val-
ues of coupling and initial frequency detuning param-
eters are presented. Boundaries of the synchronous
regime in the parameter space for every particular el-
ement were found and thus boundary of global syn-
chronization regime was obtained. It is worth notic-
ing that there is a limitation for the boundary of syn-
chronous regime of even elements related to the form
of the boundary for preceding element.
The boundaries of autooscillatory regimes with var-

ious rotation number were specified and features of
mutual transitions between them were studied. Note
that all the autooscillatory regimes regions are sepa-
rated with the quazisynchronous regime regions and
transitions between them always realizes due to saddle-
node bifurcation of the corresponding limit cycle in
the phase space (exept special case, discussed above).
Consequently number increase of trajectory rotations
before closure is not a result of period doubling cas-
cade, but is the result of the birth of the trajectory with
large number of the rotations due to the phase trajectory
shrink on the phase torus.
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