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Abstract
Understanding the dynamical processes by which

cells translate external stimuli into an adequate re-
sponse is a fundamental problem in biology that can be
addressed through the methods of physics and nonlin-
ear dynamics. Transcription activators play a key role
in this system: they are proteins that become active un-
der certain external stimuli and trigger the expression
of genes encoding for the proteins required by the cells
to provide an adequate response. Their activity is com-
monly controlled by different negative feedbacks that
regulate the duration and strength of their activations.
This can give rise to pulses in the activity of the tran-
scription activator and these systems can be referred
to as “genetic oscillators”: a paradigmatic example is
NF-κB, that can be modelled as a nonlinear stochas-
tic oscillator. We recently showed that a simplified
model of this genetic circuit can be analyzed combin-
ing ideas from dynamical systems theory and stochas-
tic processes. Here we use those tools to show that it
can also reproduce the dynamical patterns of gene ex-
pression that this genetic oscillator can produce. Fur-
thermore, we use our approach to characterize the dy-
namics of our simple model in cancer cells, where the
tight regulation of this circuit is lost by the effect of mu-
tations, and show how the dynamical patterns of gene
expression are disrupted. These insights can have im-
plications in cancer biology.
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1 Introduction
The central dogma of molecular biology establishes

that each gene is transcribed into an (m)RNA, which is
then translated into a protein: these are the fundamen-
tal steps of what we call here gene expression. How-
ever, not all the genes can be expressed simultaneously
at arbitrarily high level by a cell, partly because this

process requires energy and this is necessarily a lim-
ited resource, partly because cells need different pro-
teins (which are the molecules that eventually perform
the different tasks required by cells) at different times,
depending on their function (e.g. a neuron versus a ker-
atinocyte) or in response to different external signals.
For this reason, it is known that cells control gene ex-

pression through finely regulated genetic circuits, that
are called this way in analogy with the electronic cir-
cuits. The regulation in these circuits relies on the fact
that some genes can be activated and repressed by cer-
tain proteins, which are called transcription activators
and repressors respectively. Some of those genes can
themselves encode for proteins that are either activa-
tors or repressors, or can regulate the activity of such
proteins, giving rise to different positive and negative
feedbacks and regulations. Indeed, it has been shown
that transcription activators and repressors form a net-
work of mutual activation-repression with motifs of in-
terconnection that enable the cell to perform different
functions [Alon 2007].
In recent years, thanks to live cell imaging techniques

which allow us to look at the evolution in time of the
amount of selected proteins in single cells, it is becom-
ing clear that these circuits can display a rich dynam-
ics, including oscillators, even under relatively simple
stimuli[Levine, Lin and Elowitz 2013]. Since activa-
tion and inactivation of genes is governed by a small
number of molecules (we have typically two copies of
each gene and few hundreds of RNAs produced per
gene) that operate amidst strong thermal noise, gene
expression is essentially a stochastic process [Elowitz,
Levine, Siggia and Swain 2002]. A full understanding
of how genetic circuits operate in this context and are
able to provide the right gene expression for a given
stimulus is a fundamental task.
We have been interested in the transcription factor NF-
κB. This is a transcriptional activator regulated by a
negative feedback: NF-κB controls also the expression
of an inhibitor that makes it inactive by relocating it
into the cytoplasm of the cell [Hoffmann, Levchencko,



Scott and Baltimore 2002] (recall that the DNA, and
hence the genes, is in the cell nucleus). Live cell imag-
ing shows that this mechanism produces oscillations
in the nuclear concentration of NF-κB [Zambrano,
Bianchi and Agresti 2014]. We [Zambrano, Bianchi,
Agresti and Molina 2015] recently proposed a simple
model of this genetic circuit and showed the impor-
tance of stochasticity of gene activation in generating
pulses of activity, that we can refer to loosely as oscilla-
tions (even if we do not find a limit cycle in this model).
In parallel, using a combination of biochemical and
microscopy approaches, we experimentally observed
that different genes activated by NF-κB have differ-
ent expression dynamics: some transcripts will follow
the oscillations of the activator NF-κB, some will just
increase to reach an asymptotic state, and some will
display a behavior between these two extremes [Zam-
brano, De Toma, Piffer, Bianchi and Agresti 2016]
A question that remains open is whether our simpli-

fied stochastic model can produce patterns of gene ex-
pression similar to those observed experimentally. On
the other hand, we are currently interested in how the
NF-κB pathway is deranged in different cancer mod-
els, such as in multiple myeloma. In cancer, typi-
cally mutations in different genes lead to new proteins
that are either inactive, or not functional, or in some
cases hyper-active. In this particular type of cancer,
the related mutations in the circuit regulating NF-κB
have the effect of hyperactivating NF-κB upon exter-
nal stimulation [Annunziata, Davis, Demchenko et al.
2007]. Such hyperactivation is correlated with the over-
expression of all the genes that are under the control of
this activator, in particular those related with cell sur-
vival and proliferation. Here we show that our model
is able to reproduce qualitatively such behaviour, pro-
viding insights on its origin from a dynamical systems
point of view and leading to predictions on how gene
expression might be disrupted in this system.

2 Hybrid model of a biological oscillator
The model that we consider in this paper is shown in

Fig. 1 (a), and was already described in detail in [Zam-
brano, Bianchi, Agresti and Molina 2015]. For the sake
of completeness, we describe briefly here the processes
involved and, for each of them, we provide in paren-
thesis the name of the biochemical rate that regulates
how fast they take place. Letters here represent differ-
ent biochemical species, but also the amount (in num-
ber of copies) of each of them.
The core of the model is formed by a transcription ac-

tivator A (or simply an activator) analogous to NF-κB,
hence able to activate the transcription of genes, and
by an inhibitor I . Such inhibitor can bind A (ka) and
form a complex C that cannot activate (neither repress)
the activation of the genes. Spontaneous dissociation of
the complex (kd) is unlikely but also possible. The to-
tal amount of the activator Atot (free plus bound to the
inhibitor) is considered to be constant in analogy with
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Figure 1. (a) A scheme of the model of the genetic circuit consid-
ered here. The activator A and the inhibitor I do also control the
expression of the gene GX . (b) Two examples of the evolution in
time of the activatorA using simplified hybrid simulations. The ini-
tial parameters are set as follows: ka = 5.1 · 10−6s−1; kd =
1.4 ·10−3s−1; dI = 2.1 ·10−5s−1; dC = 4.2 ·10−5s−1;
dIS = 2.6 · 10−9s−1; dCS = 1.1 · 10−8s−1; kI =
1.1 · 101s−1; dX = 2.1 · 10−5s−1; kX = 1.1 · 101s−1;
k1 = 5.8 · 10−7s−1; k1X = 5.8 · 10−7s−1; k0 =
1.4 · 10−7s−1; k0X = 1.4 · 10−7s−1. Atot = 104 and
S = 105.

NF-κB [Zambrano, Bianchi and Agresti 2014]. Math-
ematically, C +A = Atot

The protein I is synthetized (kI ) when the gene is in
its active state G, but not when it is inactive Ḡ. Notice
that, for the sake of simplicity, we skip the transcription
process. As for NF-κB, the negative feedback in this
system arises since the activator can activate G (k1).
Importantly, the inhibitor can also lead to the direct in-
activation of G (k0). The inhibitor spontaneously de-
grade, both when free (dI ) and when forming the com-
plex with A (dC).
We simplify the modelling of the complex process

by which an external signal leads to the activation of
the transcription activator by simply assuming that the
degradation of the inhibitor in the complex C can be
enhanced by the presence of the signal S (dCS), a pro-
cess that also leads to an additional degradation of the
free inhibitor (dIS). Hence, when an external signal S
appears, the transcription activation is set free and able
to start doing its job. We assume that the concentration



of S is constant in time.
Due to the fact that there is a discrete number of bio-

chemical species and that biochemical reactions take
place with a probability that depends on the abundance
of the reactants, the classical way to gain insights on the
dynamics of this type of system is to use a stochastic
formalism [Gillespie 1977]. However, as we showed
in [Zambrano, Bianchi, Agresti and Molina 2015], an
alternative approach is to use what we call a hybrid
model, by which we model using ordinary differen-
tial equations the biochemical species with high num-
bers of copies, whereas we use stochastic processes for
those with low copy numbers. Applied to this system,
this means that since the species A and I come in high
copy numbers their evolution in time can be considered
continuous and the dynamics can be described by these
differential equations:

dA

dt
= −ka ·A ·I+(kd+dC +dCSS) ·(Atot−A) (1)

and

dI

dt
= −ka·A·I+kd·(Atot−A)−(dI+dISS)I+kI ·G(t),

(2)
two equations that are driven by the stochastic process
G(t). This process reproduces the evolution in time of
the gene, of which we have just one copy and cannot be
faithfully reproduced by a continuous variable, so we
allow it to switch between 1 (G) and 0 (Ḡ) according
to the rule:

Ḡ
k1A(t)

�
k0I(t)

G. (3)

We showed [Zambrano, Bianchi, Agresti and Molina
2015] that this kind of hybrid simulation gives results
that are very close to those of the full stochastic sim-
ulation (i.e., when all the biochemical reactions are
considered stochastic processes and not just the gene
switching) for a wide parameter range around those
used by default (given in the caption of Fig. 1). On
the other hand, it also allows us to interpret the evolu-
tion in time of the system using tools of the dynamical
systems theory, as we will also see below. In Fig. 1
(b) we can see the reported stochastic spiky pulses of
A. Although strictly speaking the system is not an os-
cillator, since it lacks a limit cycle, we will refer to this
dynamics in what follows either as pulses or as oscilla-
tions.
The first question that we want to address now is how

this system will regulate the dynamics of a gene X un-
der the control of A and I .

3 Gene expression dynamics
The situation that we want to consider now is the one

represented in Fig.1(a), in which a prototypical gene
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Figure 2. The gene state of G (green line) and GX (blue line).
Even if the rates of activation and inactivation are the same (k1 =
k1X ; k0 = k0X ), the on-off switching of the two genes will differ
due to the intrinsic stochasticity of gene expression.

GX is under the control of the activator A and the in-
hibitor I . This is the typical situation for hundreds of
genes, for example, in the NF-κB system [Zambrano,
De Toma, Piffer, Bianchi and Agresti 2016]. In our
case, this means that the gene is activated by A and in-
activated by I . As the inhibitor, X will be produced at
certain rate kX and spontaneously degrade at a rate dX .
Since in principle X comes also in high copy numbers,
its dynamics will be well approximated by a continu-
ous variable, so we can model its dynamics using our
hybrid simulation approach as

dX

dt
= − dXX + kX ·GX(t). (4)

where GX(t) will switch stochastically between 1
(GX ) and 0 (ḠX ) in a process governed by the dynam-
ics of A and I according to the rules

ḠX

k1XA(t)

�
k0XI(t)

GX . (5)

Notice that the gene G and GX will switch differently
even if the rates of activation and inactivation of these
genes are exactly the same (Fig. 2): this is part of the
inherent stochasticity in gene expression in single cells
[Elowitz, Levine, Siggia and Swain 2002]. On the other
hand, starting from low values, it will reach at most a
value of max(X) = kX/dX .
We find that it is possible to obtain different gene ex-

pression dynamics, acting on the deterministic part of
the equation (4) by changing the degradation parameter
dX , which is the degradation of X . The X dynamics
shows different dynamical patterns of expression (Fig.
3): in Fig. 3 (a) we see an example of a gene display-
ing large oscillations, whereas in Fig. 3 (b) oscillations
cover a lower range of value which is much smaller in
Fig. 3 (c) (notice the change in the y-axis scale). This
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Figure 3. Simulated X dynamics using our hybrid model. The
model gives different dynamical patterns. Simulations were per-
formed by keeping all the parameters equal to those regulating the
expression of the gene G, but changing dX : (a) dX = 2.1 ·
10−3s−1; (b)dX = 2.1·10−4s−1; (c)dX = 2.1·10−5s−1.
Notice that X is normalized with the maximum amount of X pro-
duced during each simulation (max(X)=kX

dX
).

is qualitatively similar to the patterns experimentally
observed in [Zambrano, De Toma, Piffer, Bianchi and
Agresti 2016], where a different mathematical model
also suggested that degradation was the key parame-
ter to produce the different gene expression patterns.
This result allows us to gain confidence on the abil-
ity of the model to reproduce the behaviours observed
in “healthy” conditions. We will now address how the
dynamics of the activator changes in pathological con-
ditions, when certain network parameters are changed,
and how it affects the expression of genes governed by
the same parameters as those in Figs. 3 (a)-(c).
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Figure 4. Nullclines for dA/dt = 0 (black line) and for
dI/dt = 0 when G(t) = 1 (green line) and when when
G(t) = 0 (red line), as well as typical trajectories (blue thin line).
The nullclines intersect giving rise to two fixed points in each situa-
tion (black diamonds). The nullclines and trajectories are plotted for
(a) normal and (b) pathological parameters. It is possible to see that
the activator makes wide oscillations between the fixed points for the
normal condition and smaller oscillations around high A values in
the pathological condition.

4 Oscillations and gene expression in pathological
conditions

It is possible now to describe how the dynamics of the
network are modified in a pathological situation. As
an example, for the transcription factor NF-κB, it is
known that certain mutations lead to an excessive ac-
tivation of the system upon an external signal S [An-
nunziata, Davis, Demchenko et al. 2007]. This is due
to the presence of mutations that typically increase the
activity of the proteins that trigger the activation of NF-
κB when certain signals are detected by the cell recep-
tors. The only straightforward way to reproduce this
with our model is just to consider that the rates dCS

and dIS , those responsible for the degradation of the
inhibitor due to an external signal, would be strongly
increased.
As proposed [Zambrano, Bianchi, Agresti and Molina

2015], to understand the effect of such increase, we can
look at the nullclines of the dynamical system given
by eqs. (1) and (4) i.e. the combinations of A and I
for which dA

dt = 0 and dI
dt = 0. Notice that we have

three of such nullclines, since there are two possible



nullclines for (4): the one for whichG(t)=1 and the one
for whichG(t) = 0. For the parameter of the “healthy”
conditions, those considered in the previous sections,
we can see that this set of three nullclines gives two
fixed points, see Fig. 4 (a), and the system essentially
switches between the two fixed point as G(t) switches
between 0 and 1. This gives the pulsed behavior of A
that we can observe in Fig. 1.
We can now simulate the pathological condition by

multiplying dCS and dIS by a factor 10 and observe
how this is reflected in the nullclines in Figure 4 (b). In
particular, it is evident that the nullclines move in such
a way that the two new fixed points between which the
trajectories switch as the gene switches between active
and inactive state become closer and around a value of
A close to Atot, the maximum value that the free ac-
tivator A can reach. A comparison of the dynamics
for both type of situations is provided in Fig. 5 (a):
the pulsed physiological dynamics of the activator are
wider (Fig. 5 (a), green line) compared to the patholog-
ical conditions (Fig. 5 (a), red line) where oscillations
are mainly lost. The long periods between the activa-
tion and inactivations in the latter case are due to the
fact that high levels of A and low levels of I of these
new fixed points make the gene inactivation very un-
likely as compared to gene activation.
We can now explore the consequences of changes in

the dynamics of our genetic circuit in the dynamical
patterns of gene expression that it produces. To do so,
we use the same parameters k1X , k0X , kX and dX that
gave rise to the 3 patterns of gene expression in the
“healthy” conditions (obtained by changing the degra-
dation rate dX ) shown in Fig. 3, but now we consider
their evolution when A and I evolve as in the patho-
logical condition. The results are shown in Fig. 5 (b).
Compared to Fig. 3, we can see that the oscillating dy-
namics are almost lost and all the gene expression val-
ues tend to the maximum amount of X synthetized in
each simulation. As already highlighted in the patho-
logical nullclines, the higher probability of having gene
activation rather than gene inactivation has an impact
also on X synthesis, that escapes from the negative
feedback control of the genetic circuit and is kept at
high values.

5 Conclusions
Starting from a description of our hybrid model of a

simple biological oscillator with a negative feedback
[Zambrano, Bianchi, Agresti and Molina 2015], we
have shown that the expression of a gene controlled by
our activator-inhibitor system can follow different pat-
terns, which resemble the ones experimentally for NF-
κB [Zambrano, De Toma, Piffer, Bianchi and Agresti
2016], a paradigmatic example of this type of systems.
In some pathological conditions, mutations can over-
activate the system upon external signals: by changing
the parameters related to the signal S, we have shown
that in our model the oscillations of the transcriptional
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Figure 5. (a) Pulsed physiological dynamics of the activator A
(green line). The oscillating behavior is due to the stochastic switch-
ing of G(t) from 0 and 1. In pathological conditions (red line),
simulated with the increase of the rates dCS and dIS by an order of
magnitude, the oscillations of A are mainly lost and its value is al-
ways around the maximum value, as predicted by the nullclines anal-
ysis. (b) SimulatedX dynamics by our hybrid model in a pathologi-
cal cell. Simulations were performed by imposing a 10 fold increase
of dCS and dIS and keeping the same parameteres for the gene ex-
pression as in Fig 3 (blue line= dX = 2.1·10−3s−1; purple line=
dX = 2.1 · 10−4s−1; cyan line= dX = 2.1 · 10−5s−1). The
different patterns of gene expression observed in healthy conditions
are lost, giving just small fluctuations below the maximum value (no-
tice the y-axis scale).

activator of interest are mainly lost and the system is es-
sentially always active. This is also reflected in the dis-
ruption of the gene expression patterns that this simple
genetic circuit can generate: the patterns of gene ex-
pression obtained in the normal conditions are essen-
tially lost. The biological implications might be huge,
since we found for NF-κB that the patterns of gene ex-
pression, from oscillating to slowly accumulating, were
related with specific functions and hence an incorrect
dynamics of production of the proteins involved can
lead to malfunction. This can be the case of genes re-
lated to cell survival and proliferation, that are known
to be expressed in anomalously high amounts in multi-
ple myeloma, where NF-κB is often deregulated [An-
nunziata, Davis, Demchenko et al. 2007]. The next
step is to try to experimentally verify if this is the case
for cancer cells and to envision ways to correct this be-



haviour, something that might have a positive therapeu-
tic impact when dealing with this type of tumour.
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