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Abstract
This paper addresses the compact modeling of MEMS

devices with nonlinear electromechanical forces. Ide-
ally, the reduced-order model should only involve one
or two generalized coordinates. We show that a pro-
jection method based on the first eigenmode of the lin-
earized unactuated structure is a good choice in terms
of simplicity and accuracy. To take into account the
influence of distributed electrostatic forces, it is neces-
sary to approximate the nonlinear force in terms of the
reduced coordinate. It is shown that a Padé approxima-
tion of order 2 is very attractive in terms of accuracy
and numerical efficiency.
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1 Introduction
MEMS are very small devices in which electric as

well as mechanical, thermal and fluid phenomena ap-
pear and interact. Because of their microscopic scale,
strong coupling effects arise between the different
physical fields, and some forces, which were negli-
gible at macroscopic scale, have to be taken into ac-
count. In order to accurately design such micro-electro-
mechanical systems, it is important to handle the cou-
pling between the electric and the mechanical fields.
This work concerns the development of reduced-order

models for MEMS devices actuated by nonlinear elec-
tromechanical forces. The concept of model order re-
duction in the framework of nonlinear systems remains
an important challenge in the scientific community. Di-
mensionality reduction covers a wide number of appli-
cations and constitutes today a sensible subject of re-
search.
Many authors deal with reduction of MEMS mod-

els in the literature. In [Zavracky et al., 1997], the
static behavior of a clamped micro-beam is modelled

using a single stiffness element to which the electro-
static force is applied. This type of model exhibits large
errors regarding to the static pull-in value. In [Swart
et al., 1998], an automatic tool called ”AutoMM is
developed and coupled to the finite element software
MEMCAD [Senturia et al., 1992] to generate a reduced
model of a three-dimensional MEMS structure. Pa-
rameters such as the electrostatic stiffness or the me-
chanical stiffness are approximated by polynomials in
function of the state variables for different responses
corresponding to different excitations of the structure.
In [Younis et al., 2003] and [Gabbay, 1998], linear
normal modes are used to represent the dynamic be-
havior of the structure submitted to non-linear forces.
In [Nayfeh et al., 2005], different reduction methods
based on the reduction of nodes of the discretized sys-
tem and on the reduction of domains are presented.
In [Gabbay and Senturia, 1998; Gabbay and Senturia,
2000], a methodology is described to generate mod-
els on the basis of shape-functions deduced from a 3D
modeling. This methodology to the case of geometric
nonlinearities in [Mehner et al., 2000]. In [Hung and
Senturia, 1999; Hung et al., 1997; Liang et al., 2002;
Lin et al., 2003], the authors study the efficiency of re-
duction methods based on the basis of modes obtained
from a proper orthogonal decomposition (POD) of sim-
ulation data generated by a full 3D model. In [Chen et
al., 2004], an Arnoldi type method is presented, which
is based on the projection of the system in Krylov sub-
spaces. In [Lienemann et al., 2006], the authors em-
phasize the necessity of developing compact model-
ing of MEMS and specially micro-beams submitted to
electrostatic forces. In [Del Tin, 2007], the nonlinear
electromechanical forces are represented by equivalent
lumped forces applied to a certain number of retained
modes in the reduced-order model.
The objective of the present work is to obtain a sim-

plified model based on a minimal number of degrees-
of-freedom. Constructed from an initial finite element
model, the reduced model should involve only one or
two degrees-of-freedom, and still be able to represent



Figure 1. Clamped micro-beam loaded uniformly

the nonlinear dynamics of the system. The paper fo-
cuses on the case of an electrostatically-actuated micro-
beam, and two linear reduction techniques are consid-
ered, i.e. the Guyan method and a reduction method
based on linear eigenmodes. An important issue con-
cerns the representation of the nonlinear electrome-
chanical forces in the reduced model. In order to avoid
resorting to the initial finite element model for their
computation, we show that a simplified analytical ex-
pression can be used. In particular, a comparison is
realized between Taylor series expansions and Padé ap-
proximations.

2 Initial Model
For the purpose of understanding the physical phe-

nomena of electro-mechanical coupling, we restrict the
analysis in this paper to the example of the cantilever
micro-beam represented in Figure 1, with the geomet-
ric parameters: beam length L = 300 µm, beam thick-
ness t = 3 µm, initial gap distance d0 = 1 µm. The
Young modulus is E = 77 GPa and the volumic mass
is ρ = 2648 kg.
The 2D mechanical structure is modeled according to

the Euler-Bernoulli beam assumptions, and it is dis-
cretized in space using the finite element method. The
electrostatic pressure on the beam is computed accord-
ing to

pe =
1
2

ε0V
2

d2(x)
(1)

where V is the voltage difference between the structure
and the fixed electrode, ε0 is the void permittivity, and
d(x) is the gap distance at point x.
After spatial discretization, the equation of motion can

be written in matrix form as

M q̈ + C q̇ + K q = g(q, V ) (2)

where q =
{

q1 . . . qN

}
is the vector of mechanical

generalized coordinates, composed of nodal displace-
ments and rotations. M, C and K are the inertia,
damping and stiffness matrices respectively. The vec-
tor of electromechanical forces g(q, V ) is given by its
components

[g]i =
ε0SV 2

2
ϕi

(d0 − qi)2
(3)

Figure 2. Single DOF system

where S is the surface of one finite element, and ϕi is a
shape factor (ϕi = 1 if the coordinate corresponds to a
displacement, ϕi = 1/2 if the coordinate corresponds
to the displacement of the tip and ϕi = 0 if the coor-
dinate corresponds to a rotational degree of freedom).
Let us note that this model could be generalized to ac-
count for nonlinear geometric or pre-stressing effects
in other types of microstructures.
An important property of this system is the so-called

static pull-in voltage Vpi,s. It is defined as the maximal
value of V for which a stable static equilibrium exists.
Beyond the pull-in voltage, the system becomes unsta-
ble and the beam gets in contact with the electrode. In
this work, Eq. (2) is solved numerically in the time do-
main using the classical Newmark algorithm. In par-
ticular, the dynamic response is computed when a step
voltage is applied at the initial time. In this case, the
dynamic pull-in voltage Vpi,d is defined as the voltage
at which the dynamic response is no more periodic but
becomes unstable. Let us note that the following in-
equality holds: Vpi,d < Vpi,s.

3 Model Reduction
The aim of compact modeling is to extract from the

rather complex model in Eq. (2) a simpler analyti-
cal expression. For example, one could represent the
structure illustrated in Figure 1 by a simple spring-
mass system shown in Figure 2. This simplified one-
dimensional system consists in a capacitor made of two
parallel plates between which a voltage is applied. The
upper plate is supported by a spring and the lower plate
is grounded. This spring-mass model is representative
of the mode of operation of the micro-beam shown
in Figure 1 but also of many other electrostatically-
actuated MEMS devices. The dynamic equilibrium
equation of the simplified undamped system is

Mq̈ + Kq = g(q, V ) (4)

where q is the displacement of the mass, as shown
in Figure 2; M , K are the equivalent mass and stiff-
ness coefficients respectively and g(q, V ) is the equiv-
alent nonlinear electrostatic force. The objective of the
present work is to define a systematic procedure in or-
der to get suitable expressions for M , K and g.



3.1 Principle of a Subspace Reduction Method
Subspace reduction methods allow to extract the re-

duced model represented by M , K and g from the
initial model. We propose to construct the subspace
from the linearized, undamped and unactuated system.
Note that for pre-stressed micro-structures, the geomet-
ric stiffness matrix should be included in the linearized
form. Let us consider the eigenvalue problem of di-
mension N ×N defined from the linearized equations
of motion

K x = ω2 M x. (5)

The aim of a reduction method is to build a model of
dimension m < N (ideally m = 1 in our case) which
exhibits a dynamic behavior as close as possible to the
original system. To do this, a transformation matrix R
of dimension N × m is sought such that the degrees-
of-freedom of the original model and the m generalized
coordinates η of the reduced model are related by

q = R η. (6)

According to Hamilton’s principle, the reduced mass
and stiffness matrices are given by

M = RT M R and K = RT K R. (7)

According to the principle of virtual work, the expres-
sion of the nonlinear force vector is given by

g = RT g(q, V ). (8)

Hence, the whole procedure relies on the definition of
the subspace matrix R. In the following, two differ-
ent approaches are considered for the definition of R:
Guyan’s method and a method on linear eigenmodes.

3.2 Guyan’s Method of Reduction
The formulation of the model reduction problem due

to Guyan is based on the partition of the coordinates
q into significant (master or retained) coordinates qR

and insignificant (slave or condensed) coordinates qC

so that the equation of motion takes the form

[
KRR KRC

KCR KCC

] {
qR

qC

}
=

ω2

[
MRR MRC

MCR MCC

] {
qR

qC

}
. (9)

The transformation matrix is defined by [Géradin and
Rixen, 1997]

R =
[

I
−K−1

CC KCR

]
. (10)
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Figure 3. Dynamic behavior of the clamped micro-beam loaded
uniformly (Guyan)

Compact modeling of MEMS implies to retain a sin-
gle coordinate qR = η (m = 1). In the example of
Figure 1, the master coordinate is chosen at the free
extremity of the beam. In Figure 3, one observes that
the dynamic behavior of the beam is not well captured
when the voltage comes close to the dynamic pull-in
voltage. Let us note that this figure represents only a
portion of the first oscillation in each case.
A possible explanation is that Guyan’s method is well-

suited if the loads are only applied to the master coor-
dinates, but that it is not appropriate in the present situ-
ation since the loads are distributed over the whole set
of coordinates.

3.3 Reduction Based on Linear Eigenmodes
The reduction matrix can be defined as the truncated

modal matrix

R =
[
x1 . . . xm

]
whose columns are the eigenmodes of Eq. (5). In this
case, the transformation (6) leads to the normal equa-
tions

η̈r + ω2
r ηr =

xT
r g(q, V )

µr
r = 1, . . . ,m (11)

where µr denotes the modal mass. Results are shown
in Figures 4 and 5 for a basis of 1 mode and 3 modes
respectively.
Using only one eigenmode, a remarkably good ap-

proximation of the dynamic behavior of the system can
be obtained. Using three eigenmodes allows to improve
the fidelity of the reduced model near the dynamic pull-
in instability. In this example, one concludes that the
eigenmodes computed from the linearized model form
a sufficiently good basis for model reduction, and that
it is not really necessary to consider more sophisticated
approaches.
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Figure 4. Dynamic behavior of the clamped micro-beam loaded
uniformly (1 Linear Mode)
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Figure 5. Dynamic behavior of the clamped micro-beam loaded
uniformly (3 Linear Modes)

However, even though the model can be reduced to
one single mode, the expression of the nonlinear elec-
trostatic force requires a significant number of opera-
tions. The next section discusses several possible sim-
plifications of the force.

4 Reduction of the Force Term
Let us consider a model reduced to a single modal dof.

In this case, the modal amplitude η can be normalized
so that the tip displacement is given by qtip = ηd0.
The electrostatic force in terms of the generalized co-
ordinate η is obtained from (8)

g(η, V ) = xT
1 g =

ε0SV 2

2

N∑
i=1

xiϕi

(d0 − η xi)2
(12)

where xi = [x1]i is the coordinate i in the first mode-
shape vector.
The evolution of the electrostatic force shown in Fig-

ure 6 exhibits a series of vertical asymptotes corre-
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Figure 6. Evolution of the electrostatic force g vs. the modal coor-
dinate η

sponding to the poles

ηi =
d0

xi
(i = 1, . . . , N). (13)

However, only the left part of the curve is physical
since contact occurs for η = 1. In the following,
several approximated functions g̃ are proposed for the
function g defined in Eq. (12).

4.1 Simplified Approximation
A first possible approximation g̃ of the electrostatic

force g may be based on the form

g̃(η, V ) =
K V 2

(d0 − η xtip)2
(14)

with xtip is the amplitude of the mode-shape at the tip
node.
The free parameter K can be identified by imposing

that g̃ = g at a particular value η0 of the modal coordi-
nate η. However, it is found that the resulting approxi-
mation can only be made accurate around the particular
value η0. In other words, this approximation does not
allow to represent the force accurately in the whole dis-
placement range.

4.2 Polynomial Approximation
The electrostatic force may be approximated by a

polynomial of degree M , i.e.

g̃(η, V ) = V 2
M∑

j=0

aj ηj . (15)

4.2.1 Taylor Series Expansion The Taylor series
expansion of g(η, V ) in the neighborhood of η = 0 al-
lows to identify the coefficients aj in Eq. (15). Figure 7
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Figure 7. Evolution of the electrostatic force g̃ vs. the modal coor-
dinate η

shows the voltage-displacement curve for different de-
grees of Taylor series expansion. Due to the vertical
asymptote for η = 1, a rather high order of approxima-
tion is required.

4.2.2 Least Squares Approximation Another
way to determine the coefficients of the polynomial
approximation (15) is to minimize the error with the
reduced electrostatic force by solving in a least squares
sense the overdetermined nonlinear system

V 2
M∑

j=0

aj (ηi)j = g̃(ηi, V ) ∀ i = 1, . . . , P (16)

for a set of P values of the coordinate η in the interval[
0 . . . 0.9

]
. For a polynomial of order M = 10, the re-

sults are illustrated in Figure 8, and a better agreement
is observed than for a Taylor series approximation.
However, a detailed inspection would reveal higher er-

rors in the neighborhood of η = 0, and it turns out
that errors in this region strongly penalize the quality of
the model. For example, Figure 9 represents the stable
part of the static voltage-displacement curve. The ver-
tical asymptotes represent the static pull-in voltage, at
which the stable equilibrium position disappears. One
observe that the results given by the Taylor series ex-
pansion are more accurate in this case.

4.3 Padé Approximation
The Padé approximation is based on the representa-

tion of the electrostatic force in terms of a rational frac-
tion of the form

g̃(η, V ) = V 2 PL(η)
QM (η)

(17)
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Figure 8. Evolution of the electrostatic force g̃ vs. the modal coor-
dinate η
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Figure 9. Voltage-displacement curve

with

PL(η) =
L∑

i=0

ai ηi,

QM (η) =
M∑
i=0

bi ηi. (18)

It consists in solving the nonlinear system

g̃(k) = g(k) for k = 1, . . . ,M (19)

where the superscript (k) denotes the derivative of
order (k) at η = 0. The results of the voltage-
displacement curve using a Padé approximation of or-
der 1 and 2 respectively are shown in Figure 10. The
quality of the approximation is remarkable in both
cases. As in Figure 9, the voltage displacement curve
could be plotted to assess the quality of the resulting
model. For the sake of conciseness, this plot is not
given here, but we could verify that the order 2 Padé
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Figure 10. Electrostatic force vs Modal Coordinate

approximation leads to a similar level of accuracy than
the order 10 Taylor series expansion.

5 Conclusion
This paper concerns the compact modeling of MEMS

devices with nonlinear electromechanical forces. Ide-
ally, the reduced-order model should only involve one
generalized coordinate. In the considered example, a
projection method based on the first eigenmode of the
linearized unactuated structure appears to be a good
choice in terms of simplicity and accuracy. To take into
account the influence of distributed electrostatic forces,
it is necessary to approximate the nonlinear force in
terms of the reduced coordinate. It is shown that the
Padé approximation of order 2 is superior in terms of
accuracy and numerical efficiency.
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