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Abstract
We present analytical and numerical studies of nonlin-

ear localized short-wavelength excitations (breathers)
in a system of parallel weakly coupled chains of non-
linear oscillators, which in particular can model dy-
namics of weakly coupled polymer chains in poly-
mer crystals. Periodic transverse translation (wander-
ing) of low-amplitude breather in a system of sev-
eral, up to five, coupled nonlinear chains is described,
and the dependence of the wandering period on the
number of chains is analytically estimated and com-
pared with numerical results. On-chain self-trapping
of large-amplitude 1D breather and delocalization of
the breather in 2D system of a large number of coupled
nonlinear chains is described, in which the breather,
initially excited in a given 1D chain, abruptly spreads
its vibrational energy in the whole 2D system upon
decreasing breather frequency or amplitude below the
threshold one. The threshold breather frequency is
above the cut off phonon frequency in 2D system, and
the threshold breather amplitude scales as square root
of the inter-chain coupling constant. Such delocaliz-
ing transition of discrete breather in 2D and 3D system
of coupled nonlinear chains also has an analogy with
delocalizing transition of Bose-Einstein condensates in
2D and 3D optical lattices. The analytical results are
confirmed by computer simulations.
Keywords: breather, delocalization, coupled nonlin-

ear chains.

1 Introduction
The interest in studying moving nonlinear excitations

in solids (solitons, kink-solitons, intrinsic localized
modes and breathers, etc.) is strongly motivated by the
fact that they can contribute to the thermal and thermal-
transport properties of the material. Nonlinear exci-
tations can be created most easily in low-dimensional
systems, namely in 1D and quasi-1D anharmonic sys-
tems [Zabusky and Kruskal,1965; Kosevich and Ko-
valev, 1974; Dolgov, 1986; Sievers and Takeno, 1988;
Page, 1990; Kosevich, 1993a; Kosevich, 1993b; Ko-
sevich, 1993c; Aubry, 1997; Flach and Willis, 1998].

Solitons as self-trapped vibrational states were recently
experimentally observed in quasi-1D α−helices in pro-
teins [Edler et al., 2004]. Solitons and intrinsic local-
ized modes were also described and observed in low-
dimensional ferromagnets and antiferromagnets [Kose-
vich, Ivanov and Kovalev, 1990; Kalinikos, Kovshikov
and Patton, 1998; Sato and Sievers, 2004]. Poly-
mer crystals, which consist of coupled long molecu-
lar chains, can be considered as an important exam-
ple of quasi-1D solid-state structures. Kink-solitons
and breathers were described in strongly anisotropic
quasi-1D polymer crystals [Yakushevich, Savin and
Manevitch, 2002; Savin and Manevitch, 2003; Savin,
Zubova and Manevitch, 2005]. In optics, a single or
coupled nonlinear wavequides present another example
of experimentally accessable and technologically im-
portant quasi-1D systems [Hasegawa, 1990; Eisenberg
et al., 1998; Peschel et al., 1999]. One-dimensional
arrays of magnetic or optical microtraps for Bose-
Einstein condensates of ultracold quantum gases with
tunneling coupling between them provide yet another
new field for the studies of nonlinear coherent dynam-
ics in low-dimensional systems [Anderson and Kase-
vich, 1998; Trombettoni and Smerzi, 2001; Anker et
al., 2005].
On the other hand, the mechanical or tunneling cou-

pling between quasi-1D systems can result in a vari-
ety of new nonlinear effects. Among them the beat-
ing (or wandering) of the nonlinear excitation between
two or more coupled quasi-1D systems is an interest-
ing and important phenomenon, which can be revealed
in all of the aforementioned systems. Pulse switch-
ing in nonlinear fiber directional couplers [Uzunov et
al., 1995; Valkering, van Honschoten and Hoekstra,
1999] and optical Bloch oscillations in wavequide ar-
rays [Pertsch et al., 1999] can be mentioned as exam-
ples of the beating phenomena in optical waveguides.
A dynamical transition from Josephson oscillations to
nonlinear self-trapping, which was recently observed
in a single bosonic Josephson junction between two
Bose-Einstein condensates [Albiez et al., 2005], is an-
other fascinating example of the nonlinear beating phe-
nomenon.



In our recent work, we have performed analytical
and numerical studies of nonlinear localized short-
wavelength excitations (breathers) in a system of two
weakly coupled chains of nonlinear oscillators [Kose-
vich, Savin and Manevitch, 2007]. We have shown
that after the initiation of a breather on one of the
two coupled chains, under certain initial conditions it
can gradually transfer to another chain and then return
back (wandering breather). A separatrix between
the wandering and on-chain-localized (self -trapping)
regimes of breather dynamics in the two-chain system
is described, at which the rate of energy exchange be-
tween the chains decreases drastically. In this paper
we present analytical and numerical studies of nonlin-
ear localized short-wavelength excitations (breathers)
in a system of parallel weakly coupled chains of non-
linear oscillators, which in particular can model dy-
namics of weakly coupled polymer chains in poly-
mer crystals. Periodic transverse translation (wander-
ing) of low-amplitude breather in a system of sev-
eral, up to five, coupled nonlinear chains is described,
and the dependence of the wandering period on the
number of chains is analytically estimated and com-
pared with numerical results. On-chain self-trapping
of large-amplitude 1D breather and delocalization of
the breather in 2D system of a large number of coupled
nonlinear chains is described, in which the breather,
initially excited in a given 1D chain, abruptly spreads
its vibrational energy in the whole 2D system upon
decreasing breather frequency or amplitude below the
threshold one. The threshold breather frequency is
above the cut off phonon frequency in 2D system, and
the threshold breather amplitude scales as square root
of the inter-chain coupling constant. Such delocaliz-
ing transition of discrete breather in 2D and 3D system
of coupled nonlinear chains also has an analogy with
delocalizing transition for polarons in 2D and 3D lat-
tices [Kalosakas, Aubry and Tsironis, 1998] and for
Bose-Einstein condensates in 2D and 3D optical lat-
tices [Kalosakas, Rasmussen and Bishop, 2002]. The
analytical results are confirmed by computer simula-
tions.

2 Analytical model and numerical simulation

Quasi-1D system of M parallel weakly coupled an-
harmonic chains, with unit intra-chain period and inter-
chain spacing, with nearest-neighbor intra- and inter-
chain interactions, is described by the following Fermi-
Pasta-Ulam (FPU) Hamiltonian:

H =
M∑

m=1

N∑
n=1

1
2
u̇2

m,n +
M∑

m=1

N−1∑
n=1

V (um,n+1 − um,n)

+
M−1∑
m=1

N∑
n=1

U(um+1,n − um,n), (1)

where n = 1, ..., N and m = 1, ..., M numerate, re-
spectively, sites along the chains and chains, and

V (x) =
1
2
x2 +

1
3
αx3 +

1
4
βx4, (2)

U(x) =
1
2
Cx2. (3)

with C = 0.1 describing the strength of the weak inter-
chain coupling.
In Eq. (1) u

(i)
n is displacement of the n-th parti-

cle from its equilibrium position in the i-th chain,
p
(i)
n = u̇

(i)
n is particle momentum, α(i), β(i) and C

are, respectively, intra-chain linear, intra-chain nonlin-
ear and inter-chain linear force constants. We assume
that the coupling is weak, C = 0.1, and therefore do
not include the nonlinear inter-chain interaction. The
β-FPU Hamiltonian (1) (with α = 0) describes, e.g.,
purely transverse particle motion [Kosevich, 1993b].
Torsion dynamics of DNA double helix can also be
approximated by the β-FPU Hamiltonian (1) [Yaku-
shevich, Savin and Manevitch, 2002]. On the other
hand, weakly coupled nonlinear molecular chains in
polymers are characterized by the asymmetric intra-
chain anharmonic potential, with nonzero α(i) [Savin
and Manevitch, 2003; Savin, Zubova and Manevitch,
2005].
Hamiltonian (1) generates corresponding equations of

motion,

üm,n = − ∂H

∂um,n
, (4)

which in the linear approximation have the form:

üm,n = um,n+1 − 2um,n + um,n−1

+ C(um+1,n − 2um,n + um−1,n). (5)

Plane linear waves (phonons) in such system, with

um,n = u exp[iq1n + iq2m− iωt], (6)

have the dispersion:

ω(q1, q2) =
√

2[1− cos q1 + C(1− cos q2)], (7)

where both the intra-chain lattice period and inter-
chain spacing are taken equal to unit, and therefore
0 ≤ (q1, q2) ≤ π. Minimal phonon frequency in this
translationally-invariant system is zero, ω(0, 0) = 0,
while cut off phonon frequency is ω(π, π) = 2

√
1 + C

(which is equal to ω(π, π) = 2.0976 ≈ 2.1 for C =
0.1).
Since we will be interested in the short-wavelength

excitations, with q1 ≈ π, the corresponding phonon



frequency for C ¿ 1,

ω(q1 ≈ π, q2) = 2 + C sin2(
1
2
q2), (8)

determines the phonon group velocity across the
chains:

V⊥(q1 ≈ π, q2) =
∂ω(q1 ≈ π, q2)

∂q2
=

1
2
C sin(q2).

(9)
Now we turn to the nonlinear dynamics of M weakly

coupled parallel nonlinear chains with Hamiltonian (1).
We will integrate Eqs. (4) with the initial condition
which describes exact discrete breather in the m-th
chain (1 ≤ m ≤ M ) under the condition of immov-
ability of the rest of the chains, to study the time de-
pendence (for t > 0) of the vibrational energy in the
chains:

Em =
1
2

N∑
n=1

(u̇2
m,n+Vm,n+Vm,n−1+Um,n+Um−1,n),

(10)
where Vm,n = V (um,n+1 − um,n), Um,n =
U(um+1,n − um,n).
In Figs. 1 (a,b,c,d) we show the time dependence of

energies of the first, i = 1, and the last, i = M , coupled
chains for M = 2, 3, 4, 5, for the time interval just after
breather excitation on the first chain, left panel, and for
the later time, right panel. In the case of M = 2, there
is a periodic (harmonic) complete energy exchange be-
tween the first and the second chains, see Fig. 1(a). In
the case of M = 3, there is periodic (non-harmonic)
recurrence of the complete energy accumulation in the
first chain, and the period of such recurrence is twice
larger (the recurrence rate is twice smaller) than that
in the case of M = 2. The time dependence of the
first chain energy recurrence can be roughly approxi-
mated by cos4(Ct/8) (instead of cos2 Θ = cos2(Ct/4)
in the case of M = 2, see Ref. [Kosevich, Savin and
Manevitch, 2007], similar to the time dependence of
the population of the initially excited state in a three-
state (spin 1) atomic system, see, e.g., Ref. [Mewes
et al., 1997]. Here C/4 plays role of the Rabi fre-
quency, which is twice smaller than the rate of the com-
plete energy exchange (energy recurrence) in the case
of M = 2, when it is equal to C/2. In the case of
M = 4 and M = 5, the recurrence of energy of the
first (and the last chain) becomes quasi-periodic, but
still the (approximate) period TM of such recurrence
scales with the number of chains M as TM ∝ (M−1).
For M ≥ 6, C = 0.1, the initially localized (in chain
1) excitation spreads its energy in the whole system of
weakly coupled chains.
The dependence of the recurrence period TM on M

we can relate with the transverse group velocity, Eq.
(9), of the high-frequency phonons (with q1 ≈ π) in
the system of weakly coupled anharmonic chains. The

transverse wavevector q2 in Eq. (9) is equivalent to the
relative phase of the neighboring chains. In the regime
of almost-harmonic energy transfer between the neigh-
boring chains, the relative phase is always close to π/2,
see Fig. 1. It means that the transverse wavevector q2 in
the expression (9) for the transverse group velocity of
the wandering breather should also be (approximately)
equal to π/2. This gives V⊥ ≈ 1

2C for this velocity.
Essentially this characteristic group velocity does not
depend on the number of the coupled chains M . There-
fore we can estimate the period of the first chain energy
recurrence as TM = 2B(M−1)/V⊥ ≈ 4B(M−1)/C
with some dimensionless factor B, which is consistent
with our numerical observation (with B ≈ 3).

The same transverse phonon group velocity one can
estimate from Fig. 2 as the speed of breather spread-
ing across the chains. Figure 2 shows the time depen-
dence of energy distribution among the chains when
breather was initially excited in the edge chain, Figs.
2(a) and 2(b), or in the central chain, Figs. 2(c) and
2(d), in the system of M = 50 coupled chains. As
follows from Figures 2(a) and 2(c), the initial-breather
energy has spread for 20 chains for approximately 500
time units. This gives us quantitative estimate of 0.04
for the transverse group velocity, which is rather close
to our analytical estimate with the use of Eq. (9) for
q2 ≈ π/2: V⊥ ≈ 1

2C = 0.05. Figure 2 also shows
that the appearance of localized breather in a system
of coupled chains, with M À 2, has a threshold in
breather frequency, ωthresh = 2.15 in Fig. 2(b) and
ωthresh = 2.17 in Fig. 2(d),t similar to the case of
two coupled chains [Kosevich, Savin and Manevitch,
2007]. The minimal breather frequency, which cor-
responds to the appearance of localized breather in a
system of coupled chains, we should compare with
breather frequency at the separatrix in a system of two
coupled chains, ωsep ≈ 2.1 for C = 0.1 and α = 0,
see Ref. [Kosevich, Savin and Manevitch, 2007]. Since
all the above frequencies are close, we can get the
estimate for the threshold breather amplitude for its
localization in 2D system of weakly coupled chains:
Ψthresh

max ∼
√

C/β. For Ψmax < Ψthresh
max , the 1D

breather, which was initially excited in one chain, will
start to translate laterally to the neighboring chains,
will spread its energy among them and lose it due to
phonon emission, and finally will decay into small-
amplitude phonons due to lowering of its frequency up
to the cut off phonon frequency ωmax = 2

√
1 + C, see

Figs. 2(a) and 2(c). Such evolution of low-amplitude
1D breathers can also be related with the conclusion
in Ref. [Kosevich, Savin and Manevitch, 2007] that
wandering breather is not an exact solution of the non-
linear system even in the case of two coupled anhar-
monic chains. In contrast to this behavior of low-
amplitude breathers, 1D breather with the amplitude
Ψmax > Ψthresh

max is self-trapped and remains local-
ized mainly in the chain of its initial excitation, see
Figs. 2(b) and 2(d). [In Fig. 2(d) one can see a par-
tial (incomplete) energy exchange between the central



chain and its nearest neighbors, similar to the incom-
plete energy exchange in two coupled chains beyond
the separatrix, cf. [Kosevich, Savin and Manevitch,
2007]]. This phenomenon resembles the so-called
delocalizing transition in 2D system, when the wave
field abruptly changes its character from spatially local-
ized to the extended one, cf. similar delocalizing tran-
sition for polarons in 2D and 3D lattices [Kalosakas,
Aubry and Tsironis, 1998] and for Bose-Einstein con-
densate in 2D optical lattice [Kalosakas, Rasmussen
and Bishop, 2002]. In our case, the delocalizing tran-
sition occurs by the decrease of the initial breather am-
plitude Ψmax (or frequency ω) from the value Ψmax >
Ψthresh

max ∼
√

C/β (or ω > ωthresh) to the value
Ψmax < Ψthresh

max (or ω < ωthresh). Such transition is
related with finite energy threshold for the creation of
solitons and breathers in 2D and 3D systems, see Refs.
[Kingsep, Rudakov and Sudan, 1973; Flach, Kladko
and MacKay, 1997], and is absent in 1D (β-FPU or
discrete nonlinear Schrödinger equation [Kalosakas,
Aubry and Tsironis, 1998; Kalosakas, Rasmussen and
Bishop, 2002]) systems. Indeed, the threshold breather
amplitude Ψthresh

max in strongly anisotropic quasi-1D
system vanishes in the limit C → 0 of a single 1D chain
as Ψthresh

max ∼
√

C/β. Similar threshold breather am-
plitude Ψthresh

max ∼
√

C/β for breather delocalization
should also appear in 3D array of parallel weakly cou-
pled, with coupling constant C ¿ 1, nonlinear chains
which are described by the FPU Hamiltonian, similar
to the one given by Eq. (1).

3 Summary
We have shown that low-amplitude breather can per-

form periodic transverse translation (wandering) in a
system of several, up to five, coupled nonlinear chains.
The dependence of the wandering period on the number
of chains is analytically estimated and compared with
numerical results. We have also shown the on-chain
self-trapping of large-amplitude 1D breather and delo-
calization of the breather in 2D system of a large num-
ber of coupled nonlinear chains. The delocalization
occurs when the breather, initially excited in a given
1D chain, abruptly spreads its vibrational energy in the
whole 2D system upon decreasing breather frequency
or amplitude below the threshold one. The threshold
breather frequency is above the cut off phonon fre-
quency in 2D system, and the threshold breather am-
plitude scales as square root of the inter-chain coupling
constant.

Acknowledgements
This work was supported by the Presidium of the

Russian Academy of Sciences and Russian Foundation
for Basic Research (Grants 04/BGTCh-07 and 05-03-
32241).

References
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Figure 1. (color online) Time dependence of breather energy in first
(red) and last (blue) chains in a system of 2 (a), 3 (b), 4 (c), and 5 (d)
chains with C = 0.1, α = 0, β = 1. The breather was initially
excited with frequency ω = 2.05 in chain 1, with immovable rest
of the chains.
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Figure 2. Time dependence of breather energy distribution between
chains in a system of 50 coupled chains with C = 0.1, α = 0,
β = 1. Here m is chain number and Em is energy of the m-th
chain. The breather was initially excited (a) with frequency ω =
2.14 in chain 1, (b) with frequency ω = 2.15 in chain 1, (c) with
frequency ω = 2.16 in chain 25, (d) with frequency ω = 2.17 in
chain 25, with immovable rest of the chains.


