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Abstract
In the paper the problem of feedback control of vibra-

tional fields in a vibration unit is analyzed taking into
account the influence of the drive dynamics in the case
when the control algorithms are designed when the drive
dynamics are neglected. The performance of the closed
loop mechatronic systems is examined by simulation for
the model of the two-rotor vibration unit SV-2M. Com-
parison of simulation results for two cases (drive dynam-
ics are neglected or taken into account) is performed.

1 Introduction
A number of interesting physical phenomena can be

found if some engineering methodologies are applied
to study physical systems with controllers in the closed
feedback loop. For example, an interesting information
can be obtained if an engineering system is analyzed tak-
ing into account the influence of the drive dynamics in
the case when the control algorithms are designed when
the drive dynamics are neglected.

In this paper the problem of feedback control of vi-
brational fields in a vibration unit (VU) is considered. In
[Tomchina, 2018] this problem was formulated and stud-
ied when the drive dynamics are neglected. The contri-
bution of this paper is the analysis of the case when the
drive dynamics are taken into account and comparison
of simulation results for two cases (drive dynamics are
neglected or taken into account).

VU are used in the mining and manufacturing indus-
tries for the purpose of transporting and processing of
materials or products: grinding, screening, mixing, com-
pacting, etc. The most effective equipment for vibra-
tional transportation and separation of bulk materials by
fractions are vibrating screens that have as their working
body a moving screening surface (platform) [Blekhman
et al., 2001; Firsova, 2002; Firsova, 2001]. The VU is
usually equipped with electromechanical vibration ac-
tuators made on the basis of unbalanced rotors (debal-

ances) driven by electric drives.
Since different points of a vibrating body oscillate

along different trajectories, one may speak about vibra-
tional field. A systematic approach to analysis and syn-
thesis of the vibrational fields for vibrating units was
proposed by I.I.Blekhman with coauthors in 2001-2003
[Blekhman et al., 2001; Firsova, 2002; Firsova, 2001]
based on the approach of the vibrational mechanics
[Blekhman, 2000]. In [Blekhman et al., 2001; Firsova,
2002; Firsova, 2001] the construction of a vibration field
for a VU with two actuators is studied. It is shown
that it is possible to obtain a more diverse picture of
the fields of trajectories in comparison with one-rotor in-
stallations. The problem of synthesis and analysis of vi-
bration fields is considered and universal field diagrams
are constructed in [Blekhman and Vaisberg, 2011]. It is
shown that the vibration field of the two-rotor vibration
system depends on the coordinates of the points of fas-
tening of the rotors, the mass of the debalances and the
steady phase difference of the debalances provided they
are in stable synchronous rotation mode. In [Zhang et al.,
2012] is shown that using three actuators may further in-
crease efficiency of the vibration transportation.

Using control algorithms provides additional possibil-
ities for stabilization of synchronous modes of rotation
actuators [Andrievskii et al., 2001]. It allows one to
stabilize the rotation of unbalanced rotors with a given
steady phase difference, since this mode obviously intro-
duces asymmetry into the movement of the platform. An
efficient way to implement such a control is the creation
of mechatronic units based on the principles of vibration
control by feedback. In [Tomchina, 2018] the problem
of feedback control of vibrational fields was formulated
and studied when the drive dynamics are neglected, In
[Andrievsky et al., 2019] the limit possibilities for con-
trol of vibrational fields were studied and alternative al-
gorithms of phase shift control were analyzed.

In this paper the influence of the drive dynamics on
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Figure 1. Vibration unit SV-2.

control of vibration fields is examined. Simulation re-
sults for the case when the drive dynamics are taken
into account and comparison of simulation results for
two cases (drive dynamics are neglected or taken into ac-
count) are presented. The parameters of the unit model
correspond to experimental vibration set-up SV-2 de-
signed in IPME, Saint Petersburg in 1997-2000, see [An-
drievskii et al., 2001; Blekhman et al., 1999]. Appear-
ance of SV-2 is shown in Fig. 1. The mathematical
model of the unit and the control algorithm are described
in Section 2, while the simulation results are presented
and analyzed in Section 3.

2 Model of Two-rotor Vibration Unit Taking into
Account the Drive Dynamics

In this section the mathematical model of the vibration
unit and the control algorithm are described following
[Tomchina, 2018]. Besides, the drive dynamics model is
given, following [Tomchina et al., 2015].

It is a mechatronic (controlled) version of the previ-
ous designs developed in Mekhanobr-technika corpora-
tion under lead of Prof. Ilya Blekhman. The nomencla-
ture of the variables are presented in Fig. 2, following
[Andrievskii et al., 2001].
Mri(t) = m%g cos (ϕ+ ϕi); M̃si is the torque, caused

by the influence of the supporting body:

M̃si = −ẍcm% sin (ϕ+ ϕi) + ÿcm% cos (ϕ+ ϕi) +

ϕ̈
(
Ji + (−1)irm% cosϕi

)
+ (−1)iϕ̇2rm% sinϕi,

ϕ, ϕ1, ϕ2 are angle of the supporting body and rotation
angles of the rotors, respectively, measured from the hor-
izontal position, xc, yc are the horizontal and vertical
displacement of the supporting body from the equilib-
rium position, mi = m, i = 1, 2 and mn are the masses
of the rotors and supporting body, J1, J2 are the inertia
moments of the rotors, %1 = %, i = 1, 2 are the ro-
tor eccentricities, c01, c02 are the horizontal and vertical
spring stiffness, g is the gravity acceleration, m0 is the
total mass of the unit, m0 = 2m+mn, β is the damping
coefficient, kc is the friction coefficient in the bearings,
Mi are the motor torques (controlling variables). It is as-
sumed that rotor shafts are orthogonal to the motion of
the support.

The structure of the system including electric drives,
representing the elastic links of drive shafts with unbal-
anced rotors has the form presented in Fig. 3, where Mi

is the electromechanical torque of a motor; ωi is the an-
gular velocity of a motor; Mri = kr · ϕ̇i is resistance
torque of a rotor, caused by resilient friction, Mri is the
unbalanced rotor’s own torque.

To convert the scheme into the state space equations,
assume that the whole system dynamics may be consid-
ered in the vertical plane. Then the equations of dynam-
ics have the following form [Tomchina et al., 2015]:

Figure 2. Schematics of two-rotor vibration unit with DC motors.
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Figure 3. Block diagram of the vibration unit with the drive dynam-
ics.

m0ẍc − ϕ̈m% (sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2))−
ϕ̈1m% sin (ϕ+ ϕ1)− ϕ̈2m% sin (ϕ+ ϕ2)−
ϕ̇2m% (cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2))−
ϕ̇2
1m% cos (ϕ+ ϕ1)− ϕ̇2

2m% cos (ϕ+ ϕ2)−
2ϕ̇ϕ̇1m% cos (ϕ+ ϕ1)−
2ϕ̇ϕ̇2m% cos (ϕ+ ϕ2) + 2c01xc + βẋc = 0;
m0ÿc + ϕ̈m% (cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2)) +
ϕ̈1m% cos (ϕ+ ϕ1) + ϕ̈2m% cos (ϕ+ ϕ2)−
ϕ̇2m% (sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2))−
ϕ̇2
1m% sin (ϕ+ ϕ1)− ϕ̇2

2m% sin (ϕ+ ϕ2)−
2ϕ̇ϕ̇1m% sin (ϕ+ ϕ1)− 2ϕ̇ϕ̇2m% sin (ϕ+ ϕ2) +
m0g + 2c02yc + βẏc = 0;
−ẍcm% (sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2)) +
ÿcm% (cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2)) +
ϕ̈ (J + J1 + J2 − 2m%r (cosϕ1 − cosϕ2)) +
ϕ̈1 (J1 −m%r cosϕ1) + ϕ̈2 (J2 +m%r cosϕ2) +
ϕ̇2
1m%r sinϕ1 − ϕ̇2

2m%r sinϕ2 + 2m%rϕ̇ϕ̇1 sinϕ1−
2m%rϕ̇ϕ̇2 sinϕ2 +m%g (cos (ϕ+ ϕ1) +
cos (ϕ+ ϕ2)) + c03ϕ+ βϕ̇ = 0;
−ẍcm% sin (ϕ+ ϕ1) + ÿcm% cos (ϕ+ ϕ1) +
ϕ̈ (J1 −m%r cosϕ1) + ϕ̈1J1 − ϕ̇2m%r sinϕ1+
m%g cos (ϕ+ ϕ1) + krϕ̇1 = Mm1;
−ẍcm% sin (ϕ+ ϕ2) + ÿcm% cos (ϕ+ ϕ2) +
ϕ̈ (J2 +m%r cosϕ2) + ϕ̈2J2 + ϕ̇2m%r sinϕ2+
m%g cos (ϕ+ ϕ2) + krϕ̇2 = Mm2;

(1)

Unbalanced rotor structural diagram taking into account
the drive dynamics is shown in Fig. 3. M1 is the first
drive control torque, the second drive scheme is similar.
The main blocks of the system are electric drive, unbal-
anced rotor, supporting body.

When taking into account the dynamics of the drive in
the simulation process the control torque Mm1 arriving
at the input of the ”unbalanced rotor” is formed in accor-
dance with the structural diagram of the ”electric drive”.
Since the laboratory setup SV-2 used the DC motors,
the electric drive structure is selected as the traditional
single-circuit system with current loop and proportional-
integral (PI) current controller WCR(p) = b(τp+ 1)/τp
is configured to optimum modulo; b, τ are dynamic gain
and time constant of the regulator. The following no-
tation is used here: CR is the current regulator; TC is
the power (thyristor type) converter; CS is the current
sensor; Ia is the armature current; ETC and Em are con-
verter and motor EMFs; kTC and kCS are converter and
current feedback gains; kF is the motor torque (EMF)
coefficient; TTC and TCS are converter and current sen-
sor time constants; Ta is the armature time constant;
Ra is the armature circuit resistance; UCR and UCS
are current controller and current sensor output volt-
ages; U1 is the voltage corresponding to the calculated
torque M1, obtained in accordance with the equations
(8), km = kF . The ”unbalanced rotor” structural dia-
gram prepared in accordance with the fourth equation of
system (2). In accordance with the structure in Fig. 3
each motor torque Mmi determined by the value Mi,
calculated in the algorithm and obeys a system of dif-
ferential and algebraic equations (index ”i” is omitted
for simplicity):

İa =
1

Ta

(
−Ia +

1

Ra
(ETC − Em)

)
,

ĖTC =
1

TTC
(−ETC + kTCUCR) ,

U̇CS −
1

TCS
(−UCS + kCSIa) ,

U̇CS 1 =
b

τ
(U1 − UCS) ,

UCS = b (U1 − UCS) + UCS 1,

Em = kF ϕ̇, Mm = kMIa

(2)

3 Integral-differential Speed-gradient Control Al-
gorithms for Multiple Synchronization of Two-
rotor Vibration Unit

Frequency synchronization is defined as an exact co-
incidence of angular velocities of the unbalanced rotors
ωs = ωr; s, r = 1, . . . , k. [Blekhman, 2000]. For prac-
tice approximate synchronization conditions are more
appropriate [Tomchina et al., 2015]:

|ωs − ωr| ≤ ε. (3)
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Figure 4. The simulation results for the dynamics of VU neglecting
the dynamics of the electric drives (∆ϕadj = 4 rad,H∗ = 500 J,
∆ϕ = −0.74 rad)

where ε > 0 can be chosen numerically as ε = 0, 05ω∗,
with a given accuracy, similar to conventional transient
process measurement. However the ratio (3) may be not
sufficient for synchronization, since its fulfillment does
not prevent the accumulation of a phase synchronization
reduced error (reduced phase shift). That is why there is
a need to impose additional requirements on the system
phases. To this end the notion of approximate phase syn-
chronization is formulated as follows [Tomchina et al.,
2015]:

|ϕs − ϕr − Lsr| < ε; s, r = 1, . . . , k. (4)

Equations (3) and (4) should hold for some ε > 0, and
some real Lsr.

To provide a synchronous rotation mode of unbal-
anced rotors for system (1), it is suggested to use speed-
gradient method with an objective functional in the fol-
lowing form:

Q(z) =
{

0.5(1− α) (H −H∗)
2

+ α (ϕ̇1 ± ϕ̇2)
2
}
,

(5)
where 0 < α < 1 is weight coefficient; H is total me-
chanical energy of a system (1), H∗ is the desired value
of H . The speed-gradient algorithm in the finite form
with the objective functional (5) is as follows [Tomchina,
2018]:

M1 = −γ1 {(1− α) (H −H∗) ϕ̇1+
α

J1n1

(
ϕ̇1

n1
± ϕ̇2

n2

)}
;

M2 = −γ2 {(1− α) (H −H∗) ϕ̇2±
α

J2n2

(
ϕ̇1

n1
± ϕ̇2

n2

)}
;

(6)

For our purpose the proportional-integral (PI-) control

algorithm is better suited

M1 = −γ1 {(1− α) [(H −H∗) ϕ̇1+∫
(H −H∗) ϕ̇1dt

]
+ α

J1n1

(
ϕ̇1

n1
± ϕ̇2

n2

)
+

α
J1n1

(
ϕ1

n1
± ϕ2

n2
+ C1

)}
;

M2 = −γ2 {(1− α) [(H −H∗) ϕ̇2+∫
(H −H∗) ϕ̇2dt

]
± α

J2n2

(
ϕ̇1

n1
± ϕ̇2

n2

)
±

α
J2n2

(
ϕ1

n1
± ϕ2

n2
+ C2

)}
;

(7)

where C1, C2 are some constant phase shifts. To sim-
plify the implementation of PI-algorithm, the integrals
in the first terms in right hand parts of (7) may be omit-
ted:

M1 = −γ1 {(1− α) (H −H∗) ϕ̇1+
α

J1n1

(
ϕ̇1

n1
± ϕ̇2

n2

)
+ α

J1n1

(
ϕ1

n1
± ϕ2

n2
+ ∆ϕ∗

1

)}
;

M2 = −γ2 {(1− α) (H −H∗) ϕ̇2±
α

J2n2

(
ϕ̇1

n1
± ϕ̇2

n2

)
± α

J2n2

(
ϕ1

n1
± ϕ2

n2
+ ∆ϕ∗

2

)}
.

(8)
The accuracy of such a simplification is reasonable after
the transient process, i.e. in the steady-state mode. The
choice of the values ∆ϕ∗

i in the term (ϕ1/n1±ϕ2/n2 +
∆ϕ∗

i ), allows one to specify the value of the reduced
phase shift ∆ϕ(∞) = ϕ1 − ϕ2. In this paper the choice
∆ϕ∗

2 = 0 is proposed.

4 Computer Simulation Results
In this section, a comparative study of vibration fields

is carried out for two cases: A) for the model of the dy-
namics of the mechanical part of a two-rotor VU with-
out taking into account the dynamics of the electric drive
system (equation (1) and B) for the model taking into ac-
count the dynamics of the drives (1), (2). For both cases
we also examine the influence of the restrictions imposed
on the controlling torques.

4.1 The study of the Vibration Field of a Two-rotor
VU without Taking into Account Restrictions on
Control Torques

As indicated earlier, the conclusion that, for fixed co-
ordinates of attachment points and for given mass iner-
tia parameters of vibration exciters, the type of trajecto-
ries of the vibration field determined by the steady-state
phase shift of the rotors was theoretically justified for
a model that takes into account the dynamics of only
the mechanical part of the vibration unit. Therefore, at
the first stage the vibration fields obtained at the same
steady-state phase shift of the rotors were compared for
the model of the mechanical part of the vibration unit (1)
and the model taking into account the drive (1), (2) by
means of simulation.

The results of this study are presented in Fig. 4 and
Fig. 5 where a) is the graph of the phase difference of the
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Table 1.

H∗, J ∆ϕ vs H∗ and ∆ϕadj , rad

∆ϕadj , rad 75 300 500

-4 2,1 1,115 0,79

-3 1,55 0,795 0,575

-2 1,025 0,52 0,39

-1 0,52 0,265 0,195

0 0,03 0,02 0,015

1 -0,45 -0,225 -0,165

2 -0,92 -0,475 -0,35

3 -1,39 -0,74 -0,54

4 -1,85 -1,035 -0,745
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Figure 5. The simulation results for the dynamics of VU neglecting
the dynamics of the electric drives (∆ϕadj = 3.7 rad,∗ = 350 J,
∆ϕ = −0.74 rad)

rotors, ∆ϕ = ϕ1 − ϕ2, b) are trajectories of movement
of 5 points of a platform of the VU. In this section, the
parameter of the control algorithm (8) ∆ϕ∗

1 is denoted
by ∆ϕ∗

1 = ∆ϕadj , the parameter ∆ϕ∗
2 = 0.

As is seen from the figures, in spite of the difference
between the design parameters of the algorithm ∆ϕadj
and H∗ for the same steady-state phase shift (∆ϕ =
−0.74 rad), the slope angles of the main axes of the el-
liptic trajectories for all points of the platform are almost
identical in both cases, which indicates identity of vibra-
tion fields. However, as it turned out during the simula-
tion, in order to obtain the same value of the steady-state
phase shift in the case of the mechanical part model (1)

and for the model taking into account the drive (1), (2)
in the control algorithm (8) different values should be
specified. For the same ∆ϕadj values in the control al-
gorithm (8), the steady-state values for the systems in
question are different. (Fig. 6)

In Fig. 7 and 8 the nomograms which determine the
dependence of the steady-state value of the limit phase
difference of the rotors ∆ϕ on the value of the phase dif-
ference ∆ϕadj specified in the synchronization control
algorithm (8) are presented. Nomograms were obtained
for the vibration stand SV-2 model using computer sim-
ulation. Each curve of the nomogram corresponds to a
certain set of the rotation speed of the rotors, by which
the value of H∗ is determined. In Fig. 7 the nomograms
for system (1), not taking into account the drive dynam-
ics are presented. The results for three different values
of the desired energy are presented in Table 1.

The similar nomograms for the model of the VU, tak-
ing into account the dynamics of electric drives are given
below. We assume that the control torques Mi(t) are
calculated in accordance with formulas (8) and they are
not limited in level. The data obtained during simulation
are presented in Table 2. According to the data in Table
2, nomograms for the desired limit phase shift ∆ϕ vs.
∆ϕadj in presence of the drive dynamics are shown in
(Fig. 8).
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change of ∆ϕ for ∆ϕadj = 2 rad,H∗ = 500 J a) for system (1),
b) for system ((1),(2))
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Table 2.

H∗, J ∆ϕ, rad

∆ϕadj , rad 75, J 300, J 500, J

–5 2,525 1,415 0,925

–4 1,995 1,01 0,698

–3 1,46 0,705 0,5

–2 0,94 0,45 0,324

–1 0,455 0,214 0,155

0 –0,013 –0,013 –0,01

1 –0,475 –0,238 –0,174

2 –0,95 –0,47 –0,342

3 –1,44 –0,73 –0,52

4 –2,03 –1,025 –0,715

5 –2,54 –1,425 –0,945
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Figure 9. Graphs of changes in armature current and EMF TT with-
out limitation onMi(t).
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Figure 10. Armature current and EMF TT under constraint |Mi| ≤
L = 5N·m.

Figure 7. Nomogram representing the dependence of the desired
limit phase shift ∆ϕ on the control algorithm parameter ∆ϕadj for
the model (1)

Figure 8. Nomogram for the desired limit phase shift ∆ϕ vs.
∆ϕadj in presence of the drive dynamics.

As is seen from the nomograms, the steady-state rotor
phase shifts that determine the type of vibration fields
for the model of the mechanical part of the VU (1) and
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Table 3.

L, N·m ∆ϕ, rad

∆ϕadj , rad 15 10 5 3

-5 2,53 2,6 3,32 4,1

-4 1,99 2 1,85 2,54

-3 1,45 1,46 1,31 0,95

-2 0,94 0,94 0,86 0,755

-1 0,454 0,455 0,454 0,405

0 -0,013 -0,013 -0,013 -0,013

1 -0,475 -0,475 -0,475 -0,475

2 -0,95 -0,95 -0,92 -0,65

3 -1,45 -1,45 -1,12 -0,89

4 -2,03 -2,03 -2,67 -3,85

5 -2,54 -2,6 -3,33 -4,95

Figure 11. Nomograms of the dependence of the steady-state phase
shift on the level of limitation atH∗ = 75 J.

models taking into account the drive (1), (2) differ. This
effect should be taken into account in the practical im-
plementation of control algorithms.

4.2 Influence of the Constraint for Control Torques
on the Steady-state Phase Shift

The simulation results presented in Fig. 5 and Fig. 8
were obtained under the assumption that the control
torques calculated by the formulas of the synchroniza-
tion algorithm (8) are not limited in magnitude. How-
ever, this approach leads to unacceptably large values of
the currents and EMF of the thyristor converter in the
transition process compared with the normal operating
mode. Graphs of changes in the armature current and
EMF of the thyristor converter for one of the vibration
exciters are shown in Fig. 9.

When limiting the control torques, the current and
EMF of the converters have a satisfactory appearance
(Fig. 10). Graphs of changes in velocities ϕ̇i and phase
differences with limitations are satisfied as well as the

requirements for speed and overshoot.
Nomograms of the dependence of the steady-state

phase shift on the level of restriction (|Mi| ≤ L = var;
H∗ = fix) with the parameter of the algorithm (level of
the given energy) H∗ = 75 J are presented in Fig. 11.

As is seen from the nomograms of Fig. 8, Fig. 11
and the corresponding data of Table 2 and Table 3 with
the magnitude of the constraints on the control torque
greater than 10 N·m, the nomograms obtained for the
model taking into account the dynamics of the electric
drives coincide with each other (see L = 10 N·m and
L = 15 N·m) and with nomograms obtained for this
model without taking into account restrictions.

Figure 12 shows graphs of changes in the phase dif-
ference , rotor speeds, current and trajectories of various
points of the platform at |Mi| ≤ L = 5 N·m, H∗ = 100
J, ∆ϕadj = 3 rad. For these parameter values of the
control algorithm (8) and this constraint L, the steady-
state phase shift is ∆ϕ = −0.74rad, which corresponds
to the simulation results presented in Fig. 5. As can be
seen from the graphs, the current with this limitation on
the control torque has a slight excess compared with the
steady state, and the form of the vibration field is identi-
cal to that shown in Fig. 5. Some difference in the areas
limited by the trajectories is explained by the difference
in the set values of the energy H∗.

Figure 13 shows the trajectories of the platform points
with ∆ϕadj = −4 rad, H∗ = 100 J and L = 5 N·m.
The steady-state phase shift for those parameters of the
algorithm is ∆ϕ = 0.8 rad, which leads to a significant
difference in the form of the vibration field from the case
shown in Fig. 12.

Based on the presented plots we can conclude that
when constraints on the motor torque controll of the
steady phase shift, using the synchronization algorithm
can be implemented by varying the algorithm parameters
H∗ and ∆φadj within wide limits. However, the nomo-
grams dependencies of ∆φ on ∆φadj Fig.7 depend on
the value of the restriction on the motor torques. In ad-
dition, with significant restrictions on the motor torques,
the dependence of ∆φ on ∆φadj significantly depends
on the required operating speeds of the rotors, which are
determined by the value of H∗.

5 Conclusions
As shown by the study, the synchronization control al-

gorithm (8), synthesized based on the model (1), pro-
vides a stable synchronous mode for the model that takes
into account the dynamics of electric drives (1), (2).
Moreover, by setting different values of the phase shift
∆φ, ∆φadj in the algorithm (8) for the system (1),(2) it
is also possible to obtain different vibration fields corre-
sponding to different steady-state phase shifts ∆φ. The
statement that the vibration field is determined by the
value of the steady-state phase shift ∆φ which is true for
the model with neglected drive dynamics, is also valid
for system (1),(2). In addition, for the same value ∆φ,
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Figure 12. Graphs a) phase difference ∆ϕ, b) rotor speeds, c) cur-
rent, d) trajectories of various points of the platform for |Mi| ≤ L =
5N·m,H∗ = 100J, ∆ϕadj = 3rad.
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Figure 13. The simulation results for the dynamics of VU taking into
account electric drives at |Mi| ≤ L = 5 N·m, (∆ϕadj = −4
rad,H∗ = 100 J, ∆ϕ = 0.8 rad).

the view of the vibration fields is identical for both mod-
els.

It follows from the nomograms (Fig.7,a; Fig.7,b) that
for fixed values of the given energy H∗ the dependences
∆φ of ∆φadj for the system with neglected drive dynam-
ics (1) and taking into account the drive (1), (2) have the
form close to linear. However, they differ numerically.
Therefore, in practical implementation the dynamics of
the drive should be taken into account to provide the de-
sired type of vibration field.

Moreover, the computer study has shown importance
of the role played by the magnitude of the maximum
controlling torque L. Thus, starting from a certain limit
value of L*, the graph dependency ∆φ from ∆φadj
(Fig.11) at a fixed H∗ for torques, |Mi| ≤ L∗ practi-
cally coincide, while for smaller restrictions L < L∗ it
is necessary to take into account the maximum torque of
the motor.
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