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Abstract 
 

In this paper a clustering analysis based on the combination of the Self-Organizing Map (SOM) and 

the K-means method is applied to three dimensional ground deformation map obtained by 

integrating sparse Global Positioning System (GPS) and Differential Interferometric Synthetic 

Aperture Radar (DInSAR) acquired at Mt Etna in the period 2003-2004. This analysis is aimed to 

partition the whole displacement field into subsets sharing some common displacements features in 

order to recognize and classify deformation patterns affecting different sectors of Etna volcano. 

Results have been also confirmed by a fuzzy c-mean analysis. 

 

Introduction 
The identification of ground deformation movements and the characterization of active faults are 

priority targets for the geophysical monitoring of Mt Etna, the most active volcano in Europe. In 

this framework both DInSAR and GPS techniques are successfully used to monitor ground 

deformation at Mt Etna [1-4]. In order to take advantage of the complementary nature of satellite 

and geodetic data, current efforts of the scientific community are devoted to develop suitable 

algorithms able to efficiently integrate these data. Indeed although satellite DInsar enables studying 

ground deformations with a spatial resolution unprecedented by any other geodetic techniques, it is 

characterized by a low temporal resolution and provides a mono-dimensional measurement of 

deformations. On the other hand although GPS is the most suitable technique for measuring ground 

deformation with sub-cm accuracy level, it provide a point wise 3D displacement vector referring to 

the specific geodetic benchmark where the antenna is set up; consequently, the spatial resolution of 

the measurement of the ground deformations is depending from the network geometry and thus is 

usually low.  

Here we present an approach to identify deformation patterns based on the joint use of a recently 

proposed technique to combine DInSAR data and GPS measurements referred to as SISTEM 

(Guglielmino et al 2009?),  and the Self-Organizing Map (SOM). 

 

 

DInSAR and GPS integration (SISTEM method ) 
Let assume that a geodynamic process (e.g. intrusions of magma or earthquakes) deforms a portion 

of Earth’s surface; under the hypothesis of infinitesimal and homogeneous strain we define an 

arbitrary point P, having position x0=(x10, x20, x30), and N surrounding experimental points (EPs) 

whose positions and displacements are respectively  x(n)=(x1(n), x2(n), x3(n)) and u(n)=(u1(n), u2(n), u3(n)) 

where n=1..N. Is a such hypothesis, adopting a linear approach, the problem of estimating the 

displacement components Ui (i=1..3)  of the point P, from the experimental data u(n)=(u1(n), u2(n), 

u3(n)), can be modelled by the N equations [6]: 
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where ∆xj(n)=xj(n)-xj0 are the relative positions of the n
th 

EP experimental points and the arbitrary 

point P and        
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are the elements of the displacement gradient tensor. It can be decomposed in a symmetric and an 

anti-symmetric part as H=E+Ω, where E is the strain tensor and Ω is the rigid body rotation tensor.  



A DInSAR interferogram can be related to the unknown components Ui (i=1..3) of the 

displacement vector of the  point P according to the following equation: 
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where 
P

LOSD  is the LOS displacements, at the point P on the Earth’s surface  and ][ P
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unit vector pointing from the point P toward the satellite. 

In a compact form the system of equation (1) and (4) can be written as 
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where l=[U1 U2 U3 ε11 ε12 ε13 ε22  ε23 ε33 ω1 ω2 ω3] is the vector of unknown parameters,  
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LOSnnn Duuuuuuu = is the observation vector, e is the residual vector which model 

the stochastic nature of the estimation problem and A  is the design matrix defined as 
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Assuming a uniform strain field a suitable method to solve the system of equations (5) is the 

Weighted Least Squares (WLS) which gives the expression (6) as a suitable formula to estimate the 

unknown vector l  
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where W is the data covariance matrix. Usually W is assumed to be diagonal, i.e. of the form 
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where the quantities σj(n)’s are the standard deviations of the measurements. According to the 

modified least squares (MLS) approach proposed by [7], based on the adjustment of the covariance 

matrix W, we use the matrix W’  which is a weighted version of the matrix W of experimental data. 

Following the suggestion given by ref. [6, 7] the weight function considered here is: 
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where d(n)  is the distance between the n
th

 EP and the arbitrary point P, and d0 is a distance-decaying 

constant  defining the “level of locality” of the estimation.    

 

Clustering analysis method 

The Self-Organizing Map (SOM), also known as  Kohonen map, is a popular neural network based 

on unsupervised learning [8] useful in data visualization an exploration. The SOM maps high-

dimensional input vectors onto two-dimensional grid of prototype vectors that are easer to visualize 

and explore than the original data. The SOM approach is essentially based on the competition 

between the nodes and it is characterized by a modified version of the winner take all algorithm in 

which  not only the winner node is updated but also its neighbors.  

The most commonly used methods to cluster the SOM visually is based on the U-matrix. It 

visualizes distances between neighbouring map units, and thus show the cluster structure of the 

map. The highest values of the U-matrix indicate a cluster border while uniform areas of low values 

indicate clusters themselves [10]. By studying the final U-matrix map, and the underlying features 

planes of the map, a number of cluster can be identified by K-means algorithm [11, 12]. The best 

clustering structure, which have been obtained from the K-means algorithm, is selected using 

Davies-Boulding index [13]. This index uses the within-cluster distance and the between-cluster 

distance. The Davies-Boulding index is suitable for evaluation of K-means partitioning because it 

gives low values indicating good clustering results. 

 

Case study 
In this section results of the clustering analysis are briefly reported. We have statistically found that 

the optimal number of clusters in which displacements vectors are grouped is six. In particular we 

can distinguish at least four main different clusters on the eastern flank of the volcano; these 

clusters define different sectors showing different kinematics. It is interesting to note the agreement 

between the cluster and the position of the known main faults of the volcano. In fact, the faults 

border the cluster, confirming their role in decoupling the entire eastern flank of Mt. Etna in several 

blocks affected by different deformation. 1) The first one (gray) involves all the central sector of the 

flank and shows a marked seawards motion with the greatest measured velocities. It is bordered by 

some of the known faults of the volcano; this motion is in fact confined to the North by the 

easternmost prolongation of the Pernicana fault towards ESE, as already detected by GPS 

measurements [14]; westrwards, this sector is bordered by the Ripe della Naca faults and the Valle 

del Bove area; southwards, the S. Venerina – S. Tecla faults close the gray sector. 2) The second 

sector (red) surrounds the gray one and seems to be confined by two well known active faults: the 

Fiumefreddo fault on the northeastern side of the volcano and the Fiandaca one on the southern 

slope. 3) Here, this fault separates the red area from the green one, that involves the entire upper 

southern flank of Mt. Etna; this area ends southwards along the Nicolosi – Tremestieri alignment 

and westwards along the Ragalna fault and its upwards prolongation as defined by SAR 

investigation [15]. However, the South-western area of the volcano was not covered by GPS 

measures during the investigated period, so the cluster analysis in this area is conditioned only by 

InSAR data and then is unreliable. 4) On the uppermost northern side of the volcano, the blue 

cluster define a high velocity area totally confined to the North by the NE-Rift, Provenzana and 

Pernicana system, confirming the key role played by these faults in driving the ground deformation 

in this sector of the volcano [16, 2]. The partitions obtained around the summit area agree with the 

significant inflation affecting the western and upper flanks in the period 2003-2004 [1]. 

 



 
Figure 1. Clustering analysis of vectors displacement estimated by integrating DInSAR data and GPS measurements 

acquired at Mt Etna in the period 2003-2004. 1): Pernicana fault; RPN; 2) Ripe della Naca faults; 3) S.Venerina- S. 

Tecla fault; 4) Fiandaca fault; 5)Ragalna fault.  

 

 

Conclusions 
 

In this paper we have first combined DInSAR data and GPS measurements acquired at Mt Etna in 

the period 2003-2004 in order to estimate a three dimensional deformation map. Then a clustering 

analysis based on the combination of SOM and K-means method was applied to the obtained 

deformation field with the aim to identify sectors of Etna volcano sharing some common 

deformation patterns. Results show a good agreement between the clusters and the position of the 

known main faults of the volcano. Furthermore both the seawards motion of the eastern flank of 

Etna volcano and the significant inflation affecting the western and upper flanks are emphasized by 

the clustering analysis. 
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