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Abstract— The well-known concept of D-stability of matrices
is applied to a special kind of matrices, which belong to the class
of matrices for linear (linearized) mechanical systems. Systems
with two and three degrees of freedom are considered.

I. INTRODUCTION

The concept of D-stability of matrices appeared pretty
long ago, initially in works on mathematical economics [1].
Later it has found applications in mathematical methods of
ecology. As far as n × n−matrices of general form are
concerned, only some necessary and sufficient conditions of
D-stability are known ([2], [3],[4], [5] etc.). Necessary and
sufficient conditions of D-stability are known for 2nd and
3rd-order matrices. As far as 4× 4−matrices are concerned,
the paper [6] discusses one of the algorithms intended for
verification of the property of D-stability, which has been
implemented for a particular case, and the paper [7] discusses
the analytical results obtained.

II. PRINCIPAL DEFINITIONS

Let Mn(R) be a set of quadratic n×n−matrices over the
domain R of real numbers; σ(A) be the spectrum of matrix
A ∈ Mn(R); Dn ⊂ Mn(R) be a class of diagonal matrices
with positive elements on the main diagonal.

Definition 1: Matrix A ∈ Mn(R) is called D-stable if
Re(λ) < 0 for all λ ∈ σ(DA) for any D ∈ Dn .

Definition 2: Matrix Q ∈ Mn(R) belongs to the class P0,
when all the main minors of matrix Q are nonnegative, and
for each k ≤ n there exists a strongly positive minor of
matrix Q, which has the order k [2].
The requirement A ∈ (−P0) is the necessary condition of
D-stability for matrices A ∈ Mn(R) [2], it ensures positivity
of coefficients of the characteristic polynomial of matrix DA
for all D ∈ Dn .

Let matrix A be the matrix in the differential equation of
a linear mechanical system:

ẍ−Bẋ− Cx = 0, x ∈ Rm, ẋ =
dx

dt
, (1)

A =
(

B C
E 0

)
, (2)

where B is an m × m−matrix of velocity forces (both
dissipative and gyroscopic ones), C is an m×m−matrix of
positional forces (conservative and nonconservative ones), E
is a unit matrix.
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If the matrix of a linear differential system is D-stable,
then let us call the system D-stable. The pithy character
of such a concept is confirmed by the fact that there ex-
ist asymptotically stable mechanical systems, which either
possess or fail to possess the property of D-stability.

When the concept of D-stability is formally applied to
(2), the matrix D ∈ D2m is arbitrary. In order to retain
the structure of the matrix after multiplying it by D, it is
necessary to put dm+1 = ... = d2m = 1, what represents a
particular case. If matrices C and B are diagonal ones, then
the system (1) is D-stable, when both these matrices are
definite negative. This is an obvious corollary of Thomson–
Tait–Chetayev’s theorem on the possibility of stabilization of
a stable conservative system by any dissipative forces with
complete dissipation.

III. A SYSTEM WITH TWO DEGREES OF FREEDOM

In the process of investigation of the property of D-
stability, the problem is reduced to verification of positive-
ness everywhere in the positive orthant of Hurwitz determi-
nants for the matrix DA, which are real polynomials of n
variables. When matrix A ∈ M4(R), the Hurwitz polynomial
of matrix DA represents a 6th-order polynomial of four di

for each 3rd-order polynomial di. The necessary conditions
of positiveness of such a polynomial in the positive orthant,
which are complementary to the property A ∈ (−P0), write
[7]:

∆44 > 0,

−
(√−A33A22,4 +

√−A32∆22 +
√−A22,3∆33

)2

a1,1 ≥
a2
1,1∆44 ≥ 0,

−
(√−A33A21,4 +

√−A31∆22 +
√−A21,3∆33

)2

a2,2 ≥
a2
2,2∆44 ≥ 0,

−(√−A32A21,4 +
√−A31A22,4 +

√−A21,2∆33

)2
a3,3 ≥

a2
3,3∆44 ≥ 0,

−(√−A33A21,2 +
√−A32A21,3 +

√−A31A22,3

)2
a4,4 ≥

a2
4,4∆44 ≥ 0;

(3)(√−A21,2a2,2 +
√−A21,3a3,3 +

√−A21,4a4,4

)2 ≥
(−A31) ≥ 0,(√−A21,2a1,1 +

√−A22,3a3,3 +
√−A22,4a4,4

)2 ≥
(−A32) ≥ 0,(√

A21,3(−a1,1) +
√

A22,3(−a2,2) +
√

∆22(−a4,4)
)2 ≥

(−A33) ≥ 0,(√
A21,4(−a1,1) +

√
A22,4(−a2,2) +

√
∆22(−a3,3)

)2 ≥
(−∆33) ≥ 0.

(4)



Here Aji1,...,in−j
are the main minors of order j; the

subindices indicate the numbers of deleted rows and columns
of matrix A in the order of increase of the numbers; ∆kk

are the main diagonal minors of order k. Note, simultaneous
equality on the right with respect to the groups of conditions
(3) and (4) is not admitted.

The system of necessary inequalities A ∈ (−P0), (3) and
(4) for the 2nd-order matrix A (2) has the form:

b1,1 < 0, b2,2 ≤ 0,−c1,2c2,1 + c1,1c2,2 > 0,

−b2,2c1,1 + b1,2c2,1 ≤ 0,

−b1,2b2,1 + b1,1b2,2 ≥ 0,

b2,1c1,2 − b1,1c2,2 < 0, c2,2 < 0, c1,1 ≤ 0,

b1,1c1,2(−b2,1c1,1 + b1,1c2,1) ≥ 0,

b2,2c2,1(b2,2c1,2 − b1,2c2,2) ≥ 0,

b1,2c2,1(b2,2c1,1 − b1,2c2,1) ≥ 0,

b2,1c1,2(−b2,1c1,2 + b1,1c2,2) ≥ 0. (5)

Hence, in order to obtain D-stability of matrix A ∈ M4(R)
(2), it is necessary that c1,1 < 0, c2,2 < 0 and b1,1 < 0,
b2,2 ≤ 0, and in the case, when there are no zero terms in
matrices B and C, c1,2c2,1 > 0, b1,2c1,2 > 0, b1,2b2,1 > 0.

Matrix (2) is D-stable when, in addition to (5), for any
positive di there takes place the condition

d2
1d3d4b1,1c1,2(−b2,1c1,1 + b1,1c2,1)+

d2
1d

2
3b1,1c1,1(b2,2c1,1 − b1,2c2,1)−

d1d
2
2d3b2,2(b1,2b2,1 − b1,1b2,2)(−b2,2c1,1 + b1,2c2,1)+

d2
1d2d3b1,1(−b1,2b2,1 + b1,1b2,2)(−b2,2c1,1 + b1,2c2,1)−

d1d2d
2
3b1,2c2,1(−b2,2c1,1 + b1,2c2,1)−

d1d
2
2d4b2,2(b1,2b2,1 − b1,1b2,2)(b2,1c1,2 − b1,1c2,2)−

d1d2d
2
4b2,1c1,2(b2,1c1,2 − b1,1c2,2)−

d2
2d

2
4b2,2c2,2(b2,1c1,2 − b1,1c2,2)−

d2
1d2d4b1,1(−b1,2b2,1 + b1,1b2,2)(−b2,1c1,2 + b1,1c2,2)+

d2
2d3d4b2,2c2,1(b2,2c1,2 − b1,2c2,2)+

d1d2d3d4(−2(b1,2b2,1 − b1,1b2,2)c1,2c2,1−
b1,1(b2,2c1,1 − b1,2c2,1)c2,2+

b2,2c1,1(b2,1c1,2 − b1,1c2,2)) > 0.
(6)

Only the last two coefficients at d1d2d3d4 in the expres-
sion (6) are nonpositive due to the necessary conditions
(5), all the rest of the coefficients at the products di are
nonnegative.

When all the elements of matrices B and C are nonzero,
the system of inequalities (5) has the solutions:

c1,1 < 0, c2,2 < 0, b1,1 < 0, b2,2 < 0, c1,2 > 0,

0 < c2,1 <
c1,1c2,2

c1,2
,

0 < b2,1 ≤ b1,1c2,1

c1,1
, 0 < b1,2 ≤ b2,2c1,2

c2,2

or

c1,1 < 0, c2,2 < 0, b1,1 < 0, b2,2 < 0,

c1,2 < 0,
c1,1c2,2

c1,2
< c2,1 < 0,

b1,1c2,1
c1,1

≤ b2,1 < 0,
b2,2c1,2

c2,2
≤ b1,2 < 0.

(7)

Unfortunately, we fail to demonstrate the satisfaction of
condition (6) due to (7). But numerical experiments, when
only two elements are unknown in matrix A (2), give
evidence that (6) is satisfied under the conditions (7).

Example 1.
Let matrix A be such that c1,1 = −1, c2,2 = −4, b1,1 =

−1, b2,2 = −5, b1,2 = −1, c1,2 = −4/5. Conditions
(7) give the following relations for the rest of the system’s
elements: −5 < c2,1 < 0, c2,1 ≤ b2,1 < 0 (compared are
numerical values). Hence inequality (6) is satisfied for any
di > 0, and the system with such parameters is D-stable.
The trajectory of the point for c2,1 = b2,1 = −4 is shown in
Fig. 1.
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Fig. 1. Example 1

Example 2. Let parameters in matrix A have the following
values: c1,1 = −10, c2,2 = −4, b1,1 = −1, b2,2 = −5, b1,2 =
−1, c1,2 = −40/5, c2,1 = −4, b2,1 = 30. Such a system is
asymptotically stable, but the Hurwitz determinant of matrix
DA (6) for d3 = d4 = 1

1446d2
1 − 34260d1d2 + 5075d2

1d2 + 2800d2
2 + 25375d1d

2
2

may be negative for d1 ≤ 2.72859, for example, for d1 =
1.1 and 0.0588353 ≤ d2 ≤ 0.968279. Consequently, such
a system does not possess the property of D-stability. The
trajectory of the point is shown in Fig. 2

Consider the variants for (5) and (6), when matrices C
and B have zero elements.

If matrix C is diagonal, and B is symmetric diagonal
or having extra-diagonal elements, then the system is D-
stable, when both the matrices are definite negative, and this
condition is the necessary one:

c1,1 < 0, c2,2 < 0, b1,1 < 0, b2,2 < 0,

−
√

b1,1b2,2 < b1,2 <
√

b1,1b2,2.

This property may also be obtained as an obvious corol-
lary of Thomson–Tait’s theorem on stabilization of a linear
conservative system with the secular stability at the expense
of dissipative forces with complete dissipation and adding
gyroscopic forces. If the matric B of dissipative forces is
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Fig. 2. Example 2

diagonal, and if there are extra-diagonal elements in matrix
C = CT , then the system is D-stable when

b1,1 < 0, b2,2 ≤ 0, c1,1 < 0, c2,2 < 0,

−√c1,1c2,2 < c1,2 <
√

c1,1c2,2 , (c1,2 6= 0).

It is obvious from the latter property that the following
statement is valid.

Theorem 1: A stable conservative linear system with ma-
tric C, for which c1,2 6= 0, becomes D-stable under the effect
of some linear dissipative force depending on one of the
velocities.

Let the positional forces be such that c1,1 < 0, c2,2 < 0,
c2,1 = 0, c1,2 6= 0 (or c1,2 = 0, c2,1 6= 0), i.e. there
are nonconservative forces acting in the system. Such a
system may be stabilized up to D-stability at the expense of
only such linear dissipative and gyroscopic forces for which
b1,1 < 0, b2,1 = 0, b2,2 < 0, b1,2 is arbitrary (or b1,1 < 0,
b1,2 = 0, b2,2 < 0, b2,1 is arbitrary).

If matrix C is diagonal, and b2,2 = 0 in matrix B, then
only such a linear system may be D-stable, for which b1,1 <
0, c1,1 < 0, c2,2 < 0, b1,2 b2,1 < 0, i.e. only when there
are gyroscopic forces, which ensure that b1,2 b2,1 < 0.

If all the elements in matrix C are nonzero, b2,2 = 0 and
b1,2 = 0, then such a system is D-stable if and only if

b1,1 < 0, c1,1 < 0, c2,2 < 0, c2,1 > 0,

0 < c1,2 <
c1,1c2,2

c2,1
, 0 ≤ b2,1 ≤ b1,1c2,1

c1,1
,

or

b1,1 < 0, c1,1 < 0, c2,2 < 0, c2,1 < 0,

c1,1c2,2

c2,1
< c1,2 < 0,

b1,1c2,1

c1,1
≤ b2,1 ≤ 0,

(c1,2 c2,1 > 0, b2,1 c1,2 ≥ 0).

Hence the following statement is valid.
Theorem 2: The stable system (2) with positional forces

such that c1,2c2,1 > 0 may be stabilized up to D-stability
by the effect of a dissipative force, which depends on the
velocity with respect to one coordinate.

Example 3. Let numerical valuers of the matrix elements be
such that {c1,1 = −10, c2,2 = −4, b1,1 = 0, b2,2 = 0, c1,2 =
−1, c2,1 = −1, b2,1 = b1,2 = 0}. Such a conservative system
is stable (the trajectory of the point is shown in Fig.3).
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Fig. 3. Example 3, a conservative system

In case of adding a dissipative force, whose matrix has one
element b1,1 = −1, the necessary conditions of D-stability
are satisfied, and the inequality (6) holds always. Such a
system is D-stable (the point’s trajectory is shown in Fig.4)
.

-0.2-0.10.10.2

-1

-0.5

0.5

1

Fig. 4. Example 3, a D-stable system

IV. A SYSTEM HAVING 3 DEGREES OF FREEDOM

Matrix (2) for a system having 3 degrees of freedom has
the dimension of 6× 6. Introduce the following denotations:

Q =




b1,1 b1,2 b1,3 c1,1 c1,2 c1,3

b2,1 b2,2 b2,3 c2,1 c2,2 c2,3

b3,1 b3,2 b3,3 c3,1 c3,2 c3,3




P22,3,4,5 = det
(

b1,1 c1,3

b3,1 c3,3

)
,

P21,3,4,5 = det
(

b2,2 c2,3

b3,2 c3,3

)
,

P21,3,4,6 = det
(

b1,1 c1,2

b2,1 c2,2

)
,

P21,3,4,5 = det
(

b2,2 c2,3

b3,2 c3,3

)
,

P21,3,5,6 = det
(

b1,2 c1,1

b2,2 c2,1

)
,

P21,2,5,6 = det
(

b1,3 c1,1

b3,3 c3,1

)
,



P21,2,4,6 = det
(

b2,3 c2,2

b3,3 c3,2

)
.

In the characteristic polynomial of matrix DA

λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ + a6 (8)

the main diagonal minors of the Hurwitz matrix

H =




a1 a3 a5 0 0
1 a2 a4 a6 0
0 a1 a3 a5 0
0 1 a2 a4 a6

0 0 a1 a3 a5




must be positive. In (8), B2i , C2i are the main minors of
2nd-order matrices B and C (the subindex indicates the
number of the row and the column deleted); A3i,j,k

are
determinants of the 3rd-order matrices obtained by deletion
of the columns, which have the numbers indicated in the
subindices, from Q:

a1 = −d1b1,1 − d2b2,2 − d3b3,3, a2 = B23d1d2+
B22d1d3 + B21d2d3 − d1d4c1,1 − d2d5c2,2−
d3d6c3,3, a3 = −B3d1d2d3 − d2d3d5P21,2,4,6

−d1d3d4P21,2,5,6 + d2d3d6P21,3,4,5

+d1d2d5P21,3,4,6 − d1d2d4P21,3,5,6 + d1d3d6P22,3,4,5 ,
a4 = −A31,5,6d1d2d3d4 + A32,4,6d1d2d3d5

−A33,4,5d1d2d3d6 + d2d3d5d6c21 + d1d3d4d6C22

+d1d2d4d5C23 , a5 = d1d2d3

(−A31,2,6d4d5

+A31,3,5d4d6 −A32,3,4d5d6

)
,

a6 = −d1d2d3d4d5d6C3,

Conditions A ∈ (−P0) for the positivity of the coefficients
of the characteristic polynomial (8) write:

b1,1 ≤ 0, b2,2 ≤ 0, b3,3 ≤ 0, b1,1 + b2,2 + b3,3 6= 0,

c1,1 ≤ 0, c2,2 ≤ 0, c3,3 ≤ 0, B23 ≥ 0, B22 ≥ 0,

B21 ≥ 0, B23 + B22 + B21 − c1,1 − c2,2 − c3,3 6= 0,

−B3 ≥ 0, −P21,2,4,6 ≥ 0, −P21,2,5,6 ≥ 0, P21,3,4,5 ≥ 0,

P21,3,4,6 ≥ 0,−P21,3,5,6 ≥ 0, P22,3,4,5 ≥ 0,

−B3 − P21,2,4,6 − P21,2,5,6 + P21,3,4,5 + P21,3,4,6−
P21,3,5,6 + P22,3,4,5 6= 0, −A31,5,6 ≥ 0, A32,4,6 ≥ 0,

−A33,4,5 ≥ 0, C21 ≥ 0, C22 ≥ 0, C23 ≥ 0,

−A31,5,6 + A32,4,6 −A33,4,5 + C21 + C22+

C23 6= 0, C3 < 0, −A31,2,6 ≥ 0, A31,3,5 ≥ 0,

−A32,3,4 ≥ 0,−A31,2,6 + A31,3,5 −A32,3,4 6= 0.
(9)

The Hurwitz determinants for the characteristic polynomial
(8) are homogeneous forms of six variables di. According
to the Lienard-Chipart criterion, it is sufficient to verify
positivity of the main 3rd– and 5th–order minors of matrix
H . The 3rd-order Hurwitz determinant has the general degree
of 6 with respect to di, not more than 3 with respect to each
di, the total number of the polynomial’s terms is 70. The
5th-order Hurwitz determinant is reduced to the polynomial
of the general degree of 12, not more than 4 with respect to
each di, the total number of the polynomial’s terms is 485.

The complete investigation of such polynomials in symbolic
form is rather complicated. So, some necessary conditions
may be obtained from the 2nd-order determinant:

f2 = d1d2d3

(
n123 + 2

√−B23b1,1

√−B21b3,3+

2
√−B22b1,1

√−B21b2,2+

2
√−B23b2,2

√−B22b3,3

)
+

d2

(
d1

√−B23b1,1 − d3

√−B21b3,3

)2

+
(√−B22b1,1d1 −

√−B21b2,2d2

)2

d3+

d1

(
d2

√−B23b2,2 − d3

√−B22b3,3

)2

+

d2
1d4b1,1k1,1 + d2

2d5b2,2k2,2 + d2
3d6b3,3k3,3+

d1d2d4n124 + d1d2d5n125 + d1d3d4n134+
d1d3d6n136 + d2d3d5n235 + d2d3d6n236,

where

n123 = B3 −B21b1,1 −B22b2,2 −B23b3,3,

n124 = P21,3,5,6 + b2,2k1,1,

n134 = P21,2,5,6 + b3,3k1,1,

n125 = −P21,3,4,6 + b1,1k2,2,

n235 = P21,2,4,6 + b3,3k2,2,

n136 = −P22,3,4,5 + b1,1k3,3,

n236 = −P21,3,4,5 + b2,2k3,3

The condition(
n123 + 2

√−B23b1,1

√−B21b3,3+

2
√−B22b1,1

√−B21b2,2+

2
√−B23b2,2

√−B22b3,3

)
≥ 0

provides for positiveness of the coefficient for the maximum
degree of the polynomial’s variables, and it is the necessary
one for the positiveness of the polynomial f2 in the positive
orthant. This condition may be transformed to the form:

B3 +
(√−B21b1,1 +

√−B22b2,2 +
√−B23b3,3

)2

≥ 0.

(10)
If one considers f2 as a polynomial with respect to all
di, then it is necessary that the following inequalities be
satisfied: n136 ≥ 0, n236 ≥ 0, n125 ≥ 0, n235 ≥ 0, n124 ≥
0, n134 ≥ 0, what is unnecessary for a mechanical system.
This group of conditions identifies a class of systems, for
which

b3,1c1,3 ≥ 0, b3,2c2,3 ≥ 0, b2,1c1,2 ≥ 0,
b2,3c3,2 ≥ 0, b1,2c2,1 ≥ 0, b1,3c3,1 ≥ 0.

(11)

When conditions (9), (10) and (11) are satisfied, the 2nd-
order Hurwitz determinant is positive for any D ∈ D6.

The 3rd-order Hurwitz determinant f3 may be written in
the form

f3 = d3
1s31 + d3

2s32 + d3
3s33 + d2

4s34 + d2
5s35 + d2

6s36 + k30,



where s31 = s31

(
d2
4

)
, s32 = s32

(
d2
5

)
, s33 = s33

(
d2
6

)
, or

d3
1k31 +d3

2k32 +d3
3k33 +d2

4d
2
1k34 +d2

5d
2
2k35 +d2

6d
2
3k36 +k30.

The polynomials s3i, k3i do not contain di; k30 is the
polynomial of all dj having the general degree of 6; not more
than 2 – with respect to each d1, d2, d3; the degree of 1 – with
respect to d4, d5, d6. The necessary conditions of positiveness
of polynomial f3 for any di > 0 are k34 ≥ 0, k35 ≥ 0,
k36 ≥ 0, s31 ≥ 0, s32 ≥ 0, s33 ≥ 0. The first three
inequalities hold when conditions (11) are satisfied. Having
investigated the polynomials s31 ≥ 0, s32 ≥ 0, s33 ≥ 0,
we conclude on the necessity that the following inequalities
be satisfied:

((√−B23P21,2,5,6 +
√−B22P21,3,5,6 +

√
B3c1,1

)2

−

A31,5,6b1,1

)
≥ 0,

((√−B23P21,2,4,6 +
√

B21P21,3,4,6 +
√

B3c2,2

)2

+

A32,4,6b2,2

)
≥ 0,

((√
B22P21,3,4,5 +

√
B21P22,3,4,5 +

√
B3c3,3

)2

−

A33,4,5b3,3

)
≥ 0.

(12)
If the following conditions hold in addition to (12)

−b1,1(−b1,3b2,1 + b1,1b2,3)(−b3,1c1,2 + b1,1c3,2) ≥ 0,

b1,1c1,2(−b2,1c1,1 + b1,1c2,1) ≥ 0,

−b1,1(−b1,2b3,1 + b1,1b3,2)(−b2,1c1,3 + b1,1c2,3) ≥ 0,

−b1,1(c22b1,1 + b3,1c1,1c1,3 − b1,1c1,1c3,3) ≥ 0,

−b2,2(b1,3b2,2 − b1,2b2,3)(−b3,2c2,1 + b2,2c3,1) ≥ 0,

b2,2c2,1(b2,2c1,2 − b1,2c2,2) ≥ 0,

−b2,2(b2,2b3,1 − b2,1b3,2)(b2,2c1,3 − b1,2c2,3) ≥ 0,

b2,2c2,3(−b3,2c2,2 + b2,2c3,2) ≥ 0,

−b3,3(−b1,3b3,2 + b1,2b3,3)(b3,3c2,1 − b2,3c3,1) ≥ 0,

−b3,3(−b2,3b3,1 + b2,1b3,3)(b3,3c1,2 − b1,3c3,2) ≥ 0,

b3,3c3,1(b3,3c1,3 − b1,3c3,3) ≥ 0,

b3,3c3,2(b3,3c2,3 − b2,3c3,3) ≥ 0,
(13)

then the polynomials s31, s32, s33 are nonnegative. An-
other group conditions may be obtained from the 4th-order
Hurwitz determinant f4. It represents a polynomial of 6
variables, which has a general degree of 10 (the number of
its elements being 241), and has the following structure:

f4 =
s40 + d4

1s41 + d4
2s42 + d4

3s43 + d3
4s44 + d3

5s45 + d3
6s46,

where the polynomials s4i (i=1,2,3) must be positive for any
dj > 0. Proceeding from this requirement, we obtain the

necessary conditions
(√−B3C23 +

√−A31,5,6P21,3,4,6 +
√−A32,4,6P21,3,5,6

)2

+A31,2,6B23 ≥ 0,(√−B3C23 +
√−A31,5,6P21,3,4,6 +

√−A32,4,6P21,3,5,6

)2

+A31,2,6B23 ≥ 0,(√
A33,4,5P21,2,5,6 +

√−B3C22 +
√−A31,5,6P22,3,4,5

)2

−A31,3,5B22 ≥ 0
(14)

The 5th-order Hurwitz determinant is reduced to the 12th-
order polynomial with respect to six di, the degree with
respect to each variable does not exceed 4:

f5 = d1d2d3

(
s6 +

d4
1s51 + d4

2s52 + d4
3s53 + d4

4s54 + d4
5s55 + d4

6s56

)
,

where the polynomials s51, s52, s53 contain d4
i (i=4,5,6). The

polynomials s51, s52, s53 are nonnegative when the following
conditions holds:
(√

A31,5,6A32,3,4 +
√

A31,3,5A32,4,6 +
√

A31,2,6A33,4,5

)2

≥ B3C3.

Unfortunately, in virtue of the bulky character of the
polynomials under scrutiny, we have failed to obtain the
sufficient conditions of their positiveness. We have also
failed to demonstrate sufficiency of the system of necessary
inequalities obtained.

V. CONCLUSION

It has been shown that there exist asymptotically stable
mechanical systems, which either possess the property of D-
stability or do not obtain this property. Necessary conditions
and sufficient conditions of D-stability have been obtained
for the systems having 2 degrees of freedom, in particular
cases, necessary and sufficient conditions have been ob-
tained. A system of necessary conditions has been obtained
for the system having 3 degrees of freedom.
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