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Abstract
Although the method of harmonic balance is well-

known to analyze approximately nonlinear vibrations,
its application includes always a certain risk if it results
in a good approximation or if it fails. In this contribu-
tion some facts on this method are summarized, partic-
ularly a lower bound for the oscillation period is given
by the method of harmonic balance. Together with the
experience of many academic and practical examples
some comments are presented resulting in recommen-
dations when the method of harmonic balance may be
or may be not applied.
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1 Introduction
For a periodic solution of the single-degree-of-

freedom system

ẍ + f(x) = 0 (1)

about the equilibrium positionx = x0 the oscillation
periodT can be calculated by

T = 2[T1(a1) + T2(a2)] (2)

with

T1(a1) =
1√
2

∫ x0

a1

dy√
E − U(y)

,

T2(a2) =
1√
2

∫ a2

x0

dy√
E − U(y)

.

Here, the restoring force f(x) is assumed
to be a uniquely defined integrable function
with f(x)(x − x0) ≥ 0 in [a1, a2], where
a1, a2(a1 < x0 < a2) are the extreme ampli-
tudes of the oscillation. Further,U(x) =

∫ x

x0
f(y)dy

is the potential energy andE = U(a1) = U(a2)
represents the energy constant of the system.

In general the integrals (2) cannot be solved in closed
form; only in special cases they can be determined by
elementary functions or by elliptic integrals. There-
fore, in many problems approximation methods have
to be applied to obtain approximate solutions of (1)
and to determine approximately the oscillation period
(2). One of the most well-known and most applied
approximation methods is the method of harmonic
balance [3,4]. For nonlinear control problems the
method of harmonic balance has been adapted in the
frequency domain and is called the describing function
method [1,2].

Without loss of generality in the following the restor-
ing force is simplified to an odd function

f(x) = −f(−x) , x0 = 0 , xf(x) ≥ 0. (3)

Then for an approximate analysis of (1) the method of
harmonic balance is used replacing (1) by an approxi-
mate system

ẍh + ω2
h(a)xh = 0 (4)

with



ω2
h(a) =

1
πa

∫ 2π

0

f(a sinu) sinudu

=
4

πa2

∫ a

0

f(y)
y√

a2 − y2
dy (5)

(a = a2 = −a1 > 0) where the characteristicω2
h(a)x

is the Tschebyscheff polynomial of first degree with
respect tof(x).

The analysis of system (1) is approximately realized
by the analysis of linear system (2) where the eigenfre-
quencyωh(a) depends on the oscillation amplitudea.

The method of harmonic balance is applied to more
or less all types of nonlinearities. The functionsf(x)
may be smooth or discontinuous, it may include jumps
(e. g. the sign function) or even it may represent relay
functions with hysteresis (violating the assumption
of a unique function), cf. [1,4]. In many of these
applications the approximation is reasonable or even
good (confirmed by a difficult theoretical discussion
of (1) or (2) or by comparisons with simulations or
experiments), but there are also examples where the
method fails completely. Unfortunately, there is no
theoretical statement on the error of the approximation
in general. Only for small nonlinearities error esti-
mates are possible by the perturbation method, but for
most interesting, strong nonlinearities there does not
exist a theoretical justification. In the following some
comments and recommendations are given.

2 Lower Bound for T (a)

The oscillation period

T (a) = 4T2(a)

is bounded from below by the period of the approxima-
tion system (4):

T (a) ≥ Th(a) =
2π

ωh(a)
. (6)

This fact has been firstly observed by many examples,
cf. [4], but then it was explicitly proved [5]. The proof
is based on the inequality 1√

1−A
≥ 1 + A

2 for A < 1
leading to

T (a) = 2
√

2
∫ a

0

dy√
E − U(y)

= 2
√

2
∫ a

0

dy√
1
2ω2

h(a2 − y2)
√

1−A(y)

≥ 2
√

2
∫ a

0

1 + A(y)
2√

1
2ω2

h(a2 − y2)
dy

= Th(a) +
√

2
∫ a

0

A(y)dy√
1
2ω2

h(a2 − y2)

where

A(x) = 1− E − U(x)
1
2ω2

h(a2 − x2)
.

Having regard to (5) it is shown by partial integration
that the second term in the last part of the inequality
vanishes [5]. This results in the lower bound (6) of the
oscillation period and, as a by-product, to an additional
relation forωh:

ω2
h(a) =

4
π

∫ a

0

E − U(y)
(a2 − y2)

3
2
dy . (7)

The inequality (6) holds for all types of restoring
forces (which are unique and integrable in[−a, a]),
i.e. for overlinear (hardening), underlinear (softening)
or mixed-type spring forces. For other approximation
methods the bound (6) does not hold generally, cf. [5].

3 Superposition
If the nonlinear restoring forcef(x) consists of a su-

perposition of several individual characteristics,

f(x) =
n∑

i=1

fi(x) (8)

where again relations (3) are assumed for eachfi(x),
then

ω2
h(a) = ω2

h1
(a) + · · ·+ ω2

hn
(a) (9)

holds. Here,ω2
hi

(a) are defined by (5) using the charac-
teristicfi(x), i = 1, . . . , n. This is an old result which
has been discussed again more recently [6]. It can be
proved by direct calculation. The result (9) simplifies
the calculation of the eigenfrequency of system (4). It
represents a certain comfort. It should be mentioned
that other averaging methods (approximation methods)
do not have this superposition property.



4 Examples
A few examples and counter-examples shall show

how good the approximation of the method of har-
monic balance can be but how it also may fail. The
comparison is based on the oscillation period. The
explicit calculation ofT (a) and Th(a) is not shown.
The results are taken over from the literature, especially
from [4] and [6].
a) Sign functionf(x) = h sgnx:

T (a) = 4
√

2
√

a
h = 5, 6569

√
a
h

Th(a) = π
√

π
√

a
h = 5, 5683

√
a
h

 T > Th

T − Th

T
=̂ 1, 565% independent ona.

b) Quadratic functionf(x) = kx|x| :

T (a) = 6, 8699 1√
ka

Th(a) = 6, 8198 1√
ka

 T > Th

T − Th

T
=̂ 0, 729% independent ona.

c) Cubic functionf(x) = kx3:

T (a) = 7, 4164 1
a
√

k

Th(a) = 4π
a
√

3k
= 7, 2552 1

a
√

k

 T > Th

T − Th

T
=̂ 2, 174% independent ona.

d) Sine functionf(x) = k sinx:

T (a) = 4
√

kK(a)

Th(a) = 2π
√

k
√

a
2J1(a)

 T > Th

T−Th

T depends ona: According to Fig.19 in [4] the
error increases monotonically witha from 0 % for
a = 0 (trivial) over 1 % fora = π

4 to about 2% for
a = π

2 , about 100 % fora = 2π
3 and finally tends to

infinity (%) for a → π. Therefore, the error is small
for small amplitudes but becomes larger and larger for
large amplitudes increasing until infinity. Here,K(a)
is the complete elliptic integral of first kind, andJ1(a)
represents the Bessel function of first kind and first
order.

e) Underlinear characteristic with piecewise linear be-

haviour:

f(x) = f0(1−
x

x0
), x > 0; f(−x) = −f(x); a ≤ x0 :

T (a) = 4
√

x0
f0

ln
1− a

x0

1−
√

1−(1− a
x0

)2

Th(a) = 2π
√

x0
f0

1√
4x0
πa −1

 T > Th

T−Th

T depends ona
x0

: According to Fig. 3 in [6]
the error increases monotonically withax0

from 0 %
for a

x0
= 0 (trivial), over about 10 % fora

x0
= 0, 5

to about 30 % for a
x0

= 0, 9 and finally tends to
infinity (%) for a

x0
→ 1. Again, for this underlinear

restoring force the error is small for small amplitudes
but increases dramatically to inifinty if the amplitudea
tends toxo.

While the examples a), b), and c) show small con-
stant errors independent on the amplitudes, the under-
linear restoring forces d) and e) show quite different be-
haviour. The method of harmonic balance yields good
approximation as long as the vibration amplitudes are
small. But with increasing amplitudes the approxima-
tion becomes worse and its error tends to infinity when
the amplitude approximates the additional (unstable)
equilibrium point. Here, the method of harmonic bal-
ance fails completely.

5 Conclusion
According to the bound (6) for the oscillation period

and to the superposition result (9) it can be concluded
that the method of harmonic balance can be well
applied to overlinear vibration systems with hardening
spring forces. With increasing vibration amplitudes
the oscillation period of an overlinear system becomes
smaller and smaller but it is still bounded from below
by the period determined by the method of harmonic
balance. Therefore, the results (6) and (9) are good
reasons to recommend the approximation method
of harmonic balance for overlinear systems. But
for underlinear systems the method may be applied
very carefully only. If additional equilibrium points
of the restoring force exist (like in the examples d)
and e)) then the approximation fails for amplitudes
sufficiently large. Therefore, in those cases the method
of harmonic balance should be not applied.

An open problem is whether a lower bound (6) exists
also in case of self-excited forced nonlinear vibration
systems.
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