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           A nonlinear system with two degrees of freedom consisting of a rigid platform and 
mechanical vibroactuator is considered. The platform, connected to an immovable base by 
means of  elastic and damping elements can move along a fixed direction. The mechanical 
vibroactuator is an unbalanced rotor,  mounted on the platform and driven with an electric drive. 
Such a system is a model of many vibrational machines and technological units.  
          During the speed up of the actuator to the working frequency ω* exceeding the free 
oscillation frequency p of the platform, a remarkable phenomenon can be observed: capture of  
the current frequency ω near resonance frequency p. Further increase of the supply power of the 
drive leads to a jump transition from ω≈p to an above resonance frequency ω1>p.  Such a 
phenomenon was first described by an eminent German  physicist  A.Sommerfeld. In 1953 one 
of the authors of this work gave physical explanation and mathematical description of this 
phenomenon and coined the term “Sommerfeld effect” [1]. 
        Later a comprehensive study of  Sommerfeld effect was carried on in numerous 
publications including a number of books [2 – 4]. In [5, 6, 7] (see also  book [4]) it was 
discovered by means of classical methods of nonlinear mechanics and their modifications that 
“semi-slow” oscillations of rotor frequency may appear in the area of Sommerfeld effect. Such 
an effect can be interpreted as appearance of “internal pendulum” in the system. Natural 
frequency of internal pendulum is less than resonance frequency of the system. In the above 
cited papers representation of system solutions by expansions in powers of square root of a small 
parameter allowing to study multi-scale motions are used. Using internal pendulum and semi-
slow oscillations of the rotor is important for a number of methods for control of vibration units 
with inertia excitation of vibrations allowing to significantly reduced the motor power required 
for passage through resonance zone [8, 9].  
        The main contribution of this paper is analysis of existence and dynamics of internal 
pendulum. The problem of passage through resonance zone is solved by an iterative method 
combined with direct method of separation of motions. Though such an approach looks more 
primitive than the previous ones, it allows to obtain two autonomous second order equations for 
slow motions (for rotation frequency) and for semi-slow motions (for oscillations of rotation 
frequency) which can be solved separately. Both equations are valid both in below resonance and 
in above resonance area. Expression for the frequency of semi-slow oscillations (internal 
pendulum) in below resonance area can be derived from the obtained equations and provides an 
important contribution of the paper. This frequency depends essentially on rotation frequency ω 
and decreases down to zero when ω approaches the resonance frequency p. 
        A remarkable overturning property of an internal pendulum is discovered: in the below 
resonance area its equilibrium near the lower position is stable, while in the above resonance 
area its lower equilibrium becomes unstable and its equilibrium near upper position becomes 
stable. A comparison of the obtained analytical results with numerical results obtained by 
simulation of initial system equations is given demonstrating a good concordance of the results. 
         The results of the paper can be used for improvement of control methods for vibration units 
in the start-up mode. 
 
 
System description.  The system under consideration consists of an unbalanced rotor 2 mounted 
on a rigid platform 1, see Fig.1. Rotor is driven by an electric motor. The platform moving along  



                  
Fig.1. System schematics. 

 
a fixed direction  x  is connected to an unmovable base 3 by means of elastic link with stiffness  
c  and a damper with viscous friction coefficient β . Equations of motion are as follows (see [3],  
p.143) 
     ( ) ( ) sinI L R m xϕ ϕ ϕ ε ϕ= − +&& & & && ,    (1) 

    ( )ϕϕϕϕεβ sincos2 &&&&&& +=++ mcxxxM .    (2) 
Here ϕ  is the rotor rotation angle; x  is deflection of the platform; М  is mass of the platform; 
m  if mass of the rotor; I  is inertia moment of the rotor; M M m= +  is total mass of the 
system; ( )L ϕ&  is driving torque of the motor (static response*); ( )R ϕ&  is the torque of 
resistance forces. Gravity and motor internal dynamics are neglected.  
 
First approximation, Sommerfeld effect.  The following initial approximation is taken:  
     tωϕ =1 ,  1= sin cosx P t Q tω ω+ ,   (3) 

where ( )tω ω= , P ,  Q  are slow functions of time and 1x  is fast function of time. 
This approximation was studied in [3] by direct separation of motions and the following 

equation for rotation frequency was obtained: 

      ( ) ( ) ( )I L R Vω ω ω ω= − +& ,   (4) 
where 
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is the so called vibration torque providing an additional load over the rotor caused by oscillations 
of the platform. It is vibration torque that can explain Sommerfeld effect. Angular brackets in (5) 
denote averaging over the period  2T π=  by “fast” time tωτ = , other notations are as 
follows: 

                                                 
* Dependence of the static characteristic only of ϕ&  is typical, e.g. for induction motors or DC motors. 
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The value A  is the amplitude of steady-state oscillations of the platform (3) described by the 
equation 

     2
1 1 1M sinx x cx m tβ εω ω+ + =&& & ,     (7) 

that is obtained from (2) for 0 = tϕ ϕ ω= . Amplitude A  is linked to the values P  and Q  in (3) 
by the relations 

      2 2A P Q= + ,      (8) 
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The presented solution is valid when the relative change of the frequency ω , is sufficiently 
slow 

       ωωω <<& ,     (10) 
or when the frequency has reached its steady-state value constω = . 

The equation (4) has either three such steady-state solutions 1ω , 2ω , 3ω , either one 3ω , see 
Fig.2, where the curves L  correspond to static characteristics of electric motors. The solution 

1 pω <  is below-resonance, 2 pω >  is above-resonance, while 3ω  is “far-above-resonance” 
solution. It can be shown that the solutions 1ω  and 3ω  are stable, while 2ω  is unstable. The 
solution 3ω  corresponds to a steady-state working mode of “above-resonance” vibration 
machines. The curve 1L  is responsible for the capture of the system near resonance at the 
frequency 1ω  (Sommerfeld effect), the curve 3L , corresponding to a more powerful motor 
demonstrates achievement of a nominal steady-state mode. The curve 2L  corresponds to a jump 
transition from a resonance mode 1ω  to a far-above-resonance mode 3ω . 

 

 
Fig.2. Steady-state values of the rotor frequency (explanation of Sommerfeld effect). 
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Therefore already the first approximation allows one to explain and analyze Sommerfeld 
effect (see more detail in the book [3]). The second approximation of this study is aimed at 
analysis of the deviations of the rotor frequency ϕ& . As was mentioned before, existence of such 
oscillations in the near resonance zone 1 pω <  allows one to significantly reduce the torque of 
the motor *L , required for passage through resonance by means of control.  
 
Second approximation. Semi-slow oscillations of the rotor. To obtain second approximation 
make the following assumptions for initial equations (1), (2) 

     2 = tϕ ϕ ω ψ= + ,  2 1x x x y= = + ,    (11) 
and assume that ω  and 1x  satisfy (4), (7). Then the following equations for ψ  and y hold: 

  ( ) ( )1 1sin sin sinI k m x t x t m y tψ ψ ε ω ψ ω ε ω ψ+ = + − + +⎡ ⎤⎣ ⎦&& & && && && ,   (12) 

 ( ) ( ) ( )2 2My sin cos cosy cy m t t tβ ε ω ψ ω ψ ω ψ ω ω ω⎡ ⎤+ + = + + + + −⎣ ⎦& && &&& & .  (13) 

Assume that the expressions for L  and R  can be linearized near ϕ ω=& : 

   ( ) ( ) LL L kω ψ ω ψ+ = −& & ,  ( ) ( ) RR R kω ψ ω ψ+ = +& & ,  (14) 

and introduce total damping coefficient  ( )0, 0L R L Rk k k k k= + > > . Then apply direct 
separation of motions for the system (12), (13) with 

      =ψ γΨ + ,  =Yy δ+ ,    (15) 
where Ψ  and Y  are slow terms while γ  and δ  are fast 2π -periodic in tτ ω=  terms having 
zero mean when averaging in fast time tτ ω= :  

      0γ = ,  0δ = .    (16) 
Substitution of (15) in (12), (13) yields equations of fast and slow motions (it is known that the 
equations for fast motion can be solved approximately without making a serious error in  the 
equations for slow motion). For our purpose is it possible to make a further simplification and 
derive slow motion equations forΨ  under assumption that the fast variable γ  is small with 
respect toΨ , and y  is small with respect to 1x . Then substituting the first expression of (15) 
into (12), we arrive at the following equation for Ψ : 

( )1 1sin cos cos sin sinI k m x t t x tε ω ω ωΨ + Ψ = Ψ + Ψ −&& & && && . 
After performing averaging and taking into account (3), (9) this equation takes the form 
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and A  is initial approximation for the amplitude of the platform oscillations determined by (6). 



Under condition (10) the frequency of the rotorω  is changing slowly. In an under resonance 
region pω <  the value 

     ( )2 2M / 2q b p I Aω= = −     (19) 

is nothing but the frequency of small free oscillations of “internal pendulum” (with neglected 
damping force). It is seen that this frequency equals to zero when  p ω= .  
      For the equation (17) to be valid it is necessary that the frequency q  would be significantly 
less than ω , i.e. the fast variable γ  would be small with respect to Ψ , and y  would be small 
with respect to 1x . For practice the following relation is sufficient: 

       
1/
3

q ω < .     (20) 

 

       
 
     Fig.3. Dependence of the relative frequency of slow oscillations on its relative frequency. 
The plot of the function 
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is presented in Fig.3. The region satisfying inequality (20) for 31=η  is shaded. The function 

has the maximum value ( )νν +150,  at νλ 211 += . Therefore, the condition (20) holds 

for all pωλ =  if the following inequality is valid 

       ( ) 21
9
4 ηνν >+ .    (23) 

Assuming that ν << 1 in (23) and using (6), (22) to come back to dimension variables we 

   0.5              0.7              0.9     1.0 

1.4 
 
 
1.0 
 
 
0.66 

/ pλ ω=  

0.1µ =  

0.3µ =  

( ) /qz λ η
ω

=  



obtain the relation 
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9
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In other words, (24) means that the squared relative static moment of the rotor MImε  
should be less than the relative damping Mp94β . The region, corresponding to (23), is shaded 
in Fig.4. 

           
Fig.4. Second approximation validity region. 

 
Return to examination of equation (17). Its equilibrium solutions constΨ =  satisfy  

equation 

      2 2sin sin / 2 0b ρΨ − Ψ = .   (25) 
One of such solutions is  

       1 0Ψ =Ψ = ,     (26) 
while the other one satisfies the relation 

     02sin2cos2 2
2

2 =Ψ−Ψ ρb .    (27) 
An equilibrium solution is stable if the following inequality holds: 

2 21cos sin 0
2

R b ρ= Ψ − Ψ >  

(it can be easily derived from analysis of the linearized equation (17). For  1Ψ  it leads to the 
inequality 0b > , while for Ψ2  the opposite inequality b<0 holds  (the latter follows easily 
from (27) multiplied by 2cos / 2Ψ ). Therefore the solution 1 0Ψ =  is stable in the below-

resonance region ( )pω <  and unstable in the above-resonance region ( )pω > , while for the 

solution 2Ψ   the situation is opposite. 
Note that the stable steady-state solutions of the equation (17) without damping ( 0=ρ ) are 

01 ==ΨΨ  below resonance and πΨΨ == 1  above resonance, respectively. These values 
coincide with the phase shift between external force and displacement of the platform for forced 

vibrations in linear systems when the driving force tsinmF ωεω2=  is given (system with the 
energy source of infinite power). Since (17) describes the oscillations with respect to the above 
equilibria, one can say that passage through resonance leads to overturning of the “internal 
pendulum”.  
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        Discussion. According to the proposed results the steady-state or slowly varying value  of 
the rotor angular velocity ω  is determined by the equation (4), while “semi-slow” deviations of 
this angular velocity are described by  (18). Both equations hold under condition of sufficiently  
slow change of  ω  and Ψ  with respect to the deviations of ω . If condition (10) holds, then the 
changes of the frequency q  in (18) in the course of t  are slow too, and the frequency can be 
considered as approximately constant. The relative location of the characteristic frequencies 
along the ω -axis is shown schematically in Fig.5.   
 

              
Fig.5. Relative location of the system critical frequencies. 

 
Note that the equation (17) can be reduced to the equation 

     2sin2 2
1 ρχχχ =++ Wn &&& ,    (28) 

where 0ΨΨχ += , and 0Ψ ,  W  are determined from the relations 

0
2

0 2 ΨρΨ sinW,cosWb == . 
The equation (28) is nothing but the well known equation of the “biased” pendulum which 

is important for theory of synchronous electrical machines. It global behavior on the phase plane 
χχ ,&  is studied in numerous papers, see survey in [17]. However the known results apply only 

for the case ≡ω const. In a more general case of slowly varying ω , satisfying (4), one needs to 
consider a “set of phase portraits” for different values of  W  and ρ , and for jump change of the 
angle 0Ψ  when passage of ω  through resonance value p (since the sign of the coefficient b 
changes at  resonance, according to (18)). 

It is worth to note also that in this paper we did not consider the “fast” oscillations of the 
rotor velocityγ& . It is easy to see that the frequency of such oscillations is 2ω . Indeed, the 
velocity of the platform crosses zero level twice per period 2 /π ω . Hence, its maximum kinetic 

energy ( )21
2

M Aω  is twice added to the rotor kinetic energy 21
2

Iω  the amplitude value of the 

frequency oscillations satisfies the following expression: 2 / 2MA Iω ω∆ ≈ . These oscillations 
are clearly seen at Fig.6 obtained by computer simulation, see below.  

The final comment is that the obtained results admit simple interpretation in terms of 
vibrational mechanics [3]. For example, equation (17) can be presented in the form 

( ),Ψ=Ψ+Ψ VkI &&&  
where 

( ) ,sinsin 22 Ψ+Ψ−=ΨΠ−=Ψ ρbddV V  
is vibration torque,  

( ) 2sincos Ψ−Ψ−Ψ=Π ρbV  
is potential energy of the so called “vibrational forces”. Minimal points of this energy correspond 
to the satble steady-state motions. Therefore the system in question belongs to a class of so 
called “potential in the average” dynamical systems (with respect to the variable Ψ ). The 
vibration torque is potential in spite of essential nonconservativeness of initial system (1), (2).  
 
Comparison with computer simulation results. Appearance of slow oscillations of the rotor 
angular velocity is clearly seen in Fig.6 obtained by computer simulations of the system  (1), (2). 

/ω ω ω<&       / 3q ω<       1ω     p      2ω                      3ω  

ω  



In the picture the plots of the angular velocity  ( )tϕ&  for constant values of external torque 
( ) ( ) 51.0=− ωω RL kg·m/s² (passage through resonance) and 0.50 (capture). The parameter 

values in (1), (2), (14) correspond to parameters of the experimental stand SV-2 [18]: 5.1=m  
kg, 12=M  kg, 014.0=I  kg·m², 04.0=ε  m, 5300=с  kg·m²/s², 005.0=β , 5=k . 

            
            Fig.6. Change of the rotor angular velocity in the start-up mode (computer simulation 
results): upper curve - passage through resonance, lower curve - capture (Sommerfeld effect). 
 

For the above parameter values the expression (19) yields 7.5=q  с 1− , which 
corresponds to the value obtained from the simulation (Fig.6) with good accuracy. In addition, in 
Fig.6 the fast oscillations of the angular velocity of the rotor with frequency ω2  mentioned 
above can be clearly seen.  
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