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Abstract
The algebraic connectivity is crucial parameter in

studying of synchronization of diffusively coupled net-
works. This paper studies the synchronization in net-
works of Hindmarsh-Rose systems, which is one of the
most used neuron models. It presents sufficient condi-
tion for synchronization in these networks using the Lya-
punov function method. This is a simple condition which
depends on the algebraic connectivity and on the param-
eters of the individual system. Numerical examples are
presented to illustrate the obtained results.
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1 Introduction
Synchronization is a fundamental phenomenon and

plays an important role in various fields of science and
technology [Blekhman, 1988; Osipov et al., 2007]. It
is often observed in biological systems from the level
of individual cells, physiological subsystems to organ-
isms and their populations [Glass, 2001; Pikovsky et al.,
2003]. This phenomenon is necessary for the normal
functioning of various body systems, for example, for
the functioning of the lungs or the heart, when cells os-
cillate synchronously and develop a macroscopic rhythm
by this ways, which controls respiration, heartbeat, etc
[Peskin, 1975]. It also plays a crucial role in the func-
tioning of the brain, where it is associated with various
cognitive abilities [Fries, 2005]. On the other hand, the
appearance of areas of synchronous activity of neurons
can lead to several pathologies, for example, in the case
of Parkinson’s disease, blocking of many neurons leads
to tremor activity [Hammond et al., 2007]. The impor-
tant role of synchronization in information processing in

the brain makes it an important research topic in medical
and computational neuroscience.

From dynamical-systems viewpoint, synchronization
depends on some key factors which include the dynam-
ics of individual systems and the type, strength and
the topology of the interconnection between the nodes.
The simplest case of the network is a network of lin-
ear systems with linear couplings. Such networks are
well studied, and there are a lot of different results
about linear networks synchronization, just to mention
a few [Dzhunusov and Fradkov, 2011; Furtat et al.,
2014]. However, the presence of nonlinearities in net-
works makes a problem harder. The real world systems
are always nonlinear, which also applies to networks of
neural models (see eg. [Guzenko et al., 2013; Andreev
and Maksimenko, 2019]), on which this paper is fo-
cused. For the networks under diffusive coupling the al-
gebraic connectivity, i.e. the second minimal eigenvalue
of Laplace matrix, plays the crucial role in networks dy-
namics [Steur et al., 2009; Panteley and Lorı́a, 2017]. In
particular, the nonlinear networks of diffusively coupled
semi-passive systems synchronize for large enough val-
ues of algebraic connectivity [Steur et al., 2009]. For
various network nodes the value of algebraic connec-
tivity needed for synchronization can be different. In
[Plotnikov and Fradkov, 2019] the approach to obtain
synchronization conditions of heterogeneous FitzHugh-
Nagumo systems [FitzHugh, 1961; Nagumo et al., 1962]
is presented. It is based on the Lyapunov function
methods and allows to obtain simple sufficient condition
which guarantees the network synchronization. This pa-
per follows the same approach but for the networks of
Hindmarsh-Rose (HR) systems [Hindmarsh and Rose,
1984]. This model is also describes the dynamics of in-
dividual neuron, but it is described by a nonlinear sys-
tem of third-order differential equations, which makes
the problem more difficult. Note that the synchroniza-
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tion condition for directly coupled HR networks was ob-
tained in [Checco et al., 2009], while some results about
bifurcations in two coupled HR systems can be found in
[Jaimes-Reátegui et al., 2017; Raznoglazova and Plot-
nikov, 2020]. Sufficient synchronization conditions can
help easily conclude will the network synchronized or
not. In the case of synchronization absence one can use
control algorithms to ensure it [Semenov and Fradkov,
2021; Rehak and Lynnyk, 2021].

The rest of the paper is organized as follows. Section 2
introduces HR model. In Sec. 3 the conditions of HR
network synchronization are obtained. Section 4 pro-
vides the simulation results of HR network dynamics.
Finally, the conclusion is given in Sec. 5.

2 Model
The HR was initially described by a nonlinear system

of second order differential equations and was a sim-
plified version of the Hodgkin–Huxley model [Hodgkin
and Huxley, 1952]. However, after a series of exper-
iments, new modes of neuron functioning were discov-
ered that were not taken into account in the model [Hind-
marsh and Rose, 1982]. Therefore, the authors J. Hind-
marsh and M. Rose included the third equation, which
made it possible to take into account most of the new
regimes of behavior of the biological neuron. The HR
system is a model of a biological neuron and is described
by a nonlinear system of third-order differential equa-
tions [Hindmarsh and Rose, 1984]:

ẋ = −ax3 + bx2 + y − z + I,

ẏ = c− dx2 − y,
ż = r(s(x+ w)− z),

(1)

where x describes the dynamics of the membrane poten-
tial, while y and z describe the dynamics of ionic cur-
rents. Parameter 0 < r � 1 separates fast and slow
dynamics, meaning that z describes the dynamics of a
slow potassium current, while y describes the dynam-
ics a fast sodium current. I is an external current, and
a, b, c, d, s, w are constant positive parameters.

3 Main Result
Consider the network of N diffusively coupled HR

systems:

ẋi = −ax3i + bx2i + yi − zi + I +

N∑
j=1

cij(xj − xi),

ẏi = c− dx2i − yi,
żi = r(s(xi + w)− zi),

(2)
where where C = (cij), i, j = 1, . . . , N is the adja-
cency matrix of graph G which corresponds to the con-
sidered network. Suppose that the graph G is connected
and undirected.

To study the network (2) synchronization find the
mean-field dynamics by addition of all equations (2) and

dividing the sum by N :

˙̄x = −aψ + bϕ+ ȳ − z̄ + I,

˙̄y = c− dϕ− ȳ,
˙̄z = r(s(x̄+ w)− z),

(3)

where

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi, z̄ =
1

N

N∑
i=1

zi,

ψ =

N∑
i=1

x3i , ϕ =

N∑
i=1

x2i .

(4)

Introduce the coordinate synchronization errors

δ1i = xi − x̄, δ2i = yi − ȳ, δ3i = zi − z̄, (5)

then the synchronization error system dynamics can be
described by the following equations:

δ̇1i = −a(x3i − ψ) + b(x2i − ϕ) + δ2i − δ3i

+

N∑
i=1

cij(δ1j − δ1i),

δ̇2i = −d(x2i − ϕ)− δ2i,
δ̇3i = r(sδ1i − δ3i).

(6)

Thus, the problem of studying network (2) synchro-
nization can be reduced to studying of synchronization
error system (6) stability. For this purpose introduce the
following Lyapunov function:

V (∆) =

N∑
i=1

1

2

(
δ21i + µδ22i +

1

rs
δ23i

)
, (7)

where ∆ = col(δ11, δ12, δ13, . . . , δ1N , δ2N , δ3N ), and µ
is a positive constant, which will be defined later. Find
the derivative of the Lyapunov function with respect to
the system (6) and make some transformations:

V̇ (∆) =

N∑
i=1

[
−aδ1i(x3i −ψ)+bδ1i(x

2
i −ϕ)+δ1iδ2i

− δ1iδ3i + δ1i

N∑
i=1

cij(δ1j − δ1i)

− µdδ2i(x2i − ϕ)− µδ22i + δ1iδ3i −
1

s
δ23i

]
≤

N∑
i=1

[
− aδ1i(x3i − x̄3) + b|δ1i||x2i − βx̄2|+ δ1iδ2i

+ δ1i

N∑
i=1

cij(δ1j − δ1i)

+ µd|δ2i||x2i − βx̄2| − µδ22i −
1

s
δ23i

]
, (8)
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where β is some constant parameter, which will be also
defined later. Since

∑N
i=1 δki = 0, k = 1, 2, 3, these

transformations are valid.
Consider the difference of cubes x3i − x̄3 = (xi − x̄)
×(x2i + xix̄+ x̄2), where x2i + xix̄+ x̄2 is nonnegative
function. Let find the constant α, for which the following
inequality holds:

x2i + xix̄+ x̄2 ≥ α(xi − x̄)2. (9)

The inequality (9) can be presented in a matrix form:

(
xi x̄

)( 1− α 0.5 + α
0.5 + α 1− α

)(
xi
x̄

)
≥ 0.

This inequality is fulfilled if and only if the correspond-
ing matrix is nonnegative definite. Using Sylvester
criterion we obtain that α should lie in the interval
α ∈ [0; 0.25] to ensure the fulfillment of the inequality
(9).

Also consider the difference of squares x2i − βx̄2. Let
find the constant γ, for which the following inequality
holds:

x2i − βx̄2 ≤ γ(xi − x̄)2, (10)

The inequality (10) can be also presented in a matrix
form:

(
xi x̄

)(γ − 1 −γ
−γ γ + β

)(
xi
x̄

)
≥ 0.

This inequality is fulfilled if and only if the correspond-
ing matrix is nonnegative definite. Using Sylvester cri-
terion we obtain that γ > 1 and β > γ/(γ − 1).

Choosing α = 0.25 the Lyapunov function derivative
(8) can be estimated as:

V̇ (∆) ≤
N∑
i=1

[
− a

4
δ41i + bγ|δ1i|δ21i + δ1iδ2i

+δ1i

N∑
i=1

cij(δ1j−δ1i)+dγµδ21i|δ2i|−µδ22i−
1

s
δ23i

]
.

(11)

Now apply the inequality 2|uv| ≤ λu2 + v2/λ for any
variables u and v and λ > 0 to the cross-terms of (11):

bγ|δ1i|δ21i ≤
bγν1

2
δ41i +

bγ

2ν1
δ21i,

|δ1iδ2i| ≤
ν2
2
δ22i +

1

2ν2
δ21i,

µdγδ21i|δ2i| ≤
dγµν3

2
δ22i +

dγµ

2ν3
δ41i,

(12)

where ν1 > 0, ν2 > 0, ν3 > 0 are positive constants,
which will be defined later. Using obtained inequalities

(12) the Lyapunov function derivative (11) can be esti-
mated as follows:

V̇ (∆) ≤
N∑
i=1

[(
−a

4
+
bγν1

2
+
dγµ

2ν3

)
δ41i

+

(
bγ

2ν1
+

1

2ν2

)
δ21i + δ1i

N∑
i=1

cij(δ1j − δ1i)

+

(
−µ+

ν2
2

+
dγµν3

2

)
δ22i −

1

s
δ23i

]
. (13)

The coefficients before terms δ41i and δ22i in (13) should
be negative to make the Lyapunov function derivative be
negative. The coefficient before the term δ23i is negative,
while the coefficient before the term δ21i is always posi-
tive. However, there is also a coupling term, which is a
quadratic term depending on δ1i, i = 1, . . . , N . There-
fore one can make the sum of quadratic terms depending
on δ1i, i = 1, . . . , N be negative. Thus, one obtains the
following minimization problem:

−a
4

+
bγν1

2
+
dγµ

2ν3
< 0,

−µ+
ν2
2

+
dγµν3

2
< 0,

bγ

2ν1
+

1

2ν2
→ min,

(14)

which can be rewritten as:

ν1 <
aν3 − 2dγµ

2bγν3
,

ν2 < µ(2− dγν3),

bγ

2ν1
+

1

2ν2
→ min .

(15)

The minimal solution can be reached if ν2 = ν1/(bγ),
therefore the estimates of ν2 and ν1/(bγ) should be
equal and maximal. Thus, one gets:

aν3 − 2dγµ

2b2γ2ν3
= µ(2− dγν3)→ max,

where µ can be expressed to obtain:

−adγν23 + 2aν3
−2db2γ3ν23 + 4b2γ2ν3 + 2dγ

→ max . (16)

Meaning that ν3 > 0, one can find the optimal value of
ν3, which is a local maximum of the function (16):

ν3 =
1

dγ
.

Thus, other unknown parameters can also be calculated:

µ =
a

2γ2(b2 + d2)
, ν2 =

ν1
bγ

<
a

2γ2(b2 + d2)
. (17)
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Figure 1. Synchronization in diffusively coupled HR network of N
nodes (2). (a), (b), (c): dynamics of the membrane potential x,
fast sodium current y and slow potassium current z of all nodes, re-
spectively. System parameters: N = 50, a = 1, b = 2,
c = 1, d = 0.5, r = 0.01, s = 4, w = 1.5, I = 5,
λ2(G) = 15.4172. Initial conditions: xi(0), yi(0), zi(0),
i = 1, . . . , N have uniform distribution on the interval [−1; 1].

Figure 2. Desynchronization in diffusively coupled HR network of
N nodes (2). (a), (b), (c): dynamics of the membrane potentialx, fast
sodium current y and slow potassium current z of all nodes, respec-
tively. System parameters: λ2(G) = 0.0001. Other parameters
and initial conditions as in Fig. 1.

Now consider the sum of the second and the third terms
in (13) meaning that ν2 = ν1/(bγ) and formulas (5):

N∑
i=1

[
1

ν2
δ21i + δ1i

N∑
i=1

cij(δ1j − δ1i)

]

=
1

ν2

 N∑
i=1

x2i −
1

N

N∑
i,j=1

xixj


−

N∑
i=1

dix
2
i +

N∑
i,j=1

cijxixj

=
[
x1 · · · xN

] [ 1

ν2
L(G0)− L(G)

]x1...
xN

 ≤ 0,

(18)

where di is an in-degree of ith node, L(G0) is the
Laplace matrix of the complete graph G0, and L(G) is
the Laplace matrix of the connectivity graph G.

Meaning (17), γ > 1 one can conclude that the
quadratic form in (18) is negative if the following linear

matrix inequality (LMI) is feasible with some positive
ε > 0:[(

2(b2 + d2)

a
+ ε

)
1

N
L(G0)− L(G)

]
≤ 0. (19)

Since G0 is a complete graph, its Laplace matrix
L(G0) has eigenvalues 0 and 1, whose corresponding
eigenvectors are col(1, 1, . . . , 1) and any vectors that are
orthogonal to col(1, 1, . . . , 1), respectively. On the other
hand, L(G) has eigenvalues 0 < λ2 ≤ λ3 ≤ · · · ≤ λN ,
and its zero-eigenvector is col(1, 1, . . . , 1). Note that
the eigenvectors of L(G) are also the eigenvectors of
L(G0): if the eigenvector x satisfies L(G)x = 0 then
x = col(1, 1, . . . , 1), which satisfies L(G0)x = 0. Oth-
erwise, eigenvector x is orthogonal to col(1, 1, . . . , 1)
and L(G0)x = x. Therefore, one can find eigenvalues of
matrix (19), in particular its second maximal eigenvalue,
which corresponds to the second minimal eigenvalue of
Laplace matrix L(G). The LMI (19) is feasible for small
parameter ε > 0, if

λ2(G) > λ∗ =
2(b2 + d2)

a
. (20)

Thus, if the inequality (20) is fulfilled, then the Lya-
punov derivative (8) is negative, meaning that the net-
work of HR systems with diffusive coupling (2) is syn-
chronized. The following theorem holds:

Theorem 1. Let the connectivity graph G of diffusively
coupled HR network (2) be connected and undirected. If
the inequality (20) holds, where λ2(G) is an algebraic
connectivity of the graph G, then the HR network syn-
chronizes.

4 Simulation
For simulation let consider diffusively coupled net-

work of N = 50 HR systems (2). Parameters of each
node are the following: a = 1, b = 2, c = 1, d = 0.5,
r = 0.01, s = 4, w = 1.5 and I = 5. Consider
symmetric sparse matrix with density 0.9 as the adja-
cency matrix of the network (2). This matrix has ap-
proximately 0.3N2 nonzero entries, which are uniformly
distributed on the interval (0; 12), i.e. the corresponding
graph is weighted and undirected. The algebraic con-
nectivity of presented graph λ2(G) is equal to 15.4172.
Theorem 1 guarantees the HR network synchronization,
if λ2(G) > 8.5 for systems with considered parame-
ters. This means that for the considered graph one ob-
tains synchronization.

Figure 1 presents presents the results of the simula-
tion. For Fig. 1 x-axis corresponds to the time, while
y-axis corresponds to the node number. The values of
state variables of the nodes are marked by the color. One
can see that for chosen parameters there is synchroniza-
tion between all the state coordinates.
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Now consider the graph with algebraic connectivity
λ2(G) = 0.001. Theorem 1 does not guarantee the
HR network synchronization for such λ2(G). One can
see the results of simulation in Fig. 2: there is no syn-
chronization between the state coordinates. Thus, the
inequality (20) can be used to check if the HR network
is synchronized.

5 Conclusion
Here the synchronization problem in diffusively cou-

pled HR network is studied. It is known that the alge-
braic connectivity is crucial parameter for studying the
synchronization of diffusively coupled networks. For
large enough value of algebraic connectivity the network
of semi-passive diffusively coupled system will synchro-
nize. The interesting question is to find the estimate
of the algebraic connectivity ensuring network synchro-
nization. Here the Lyapunov function method is ap-
plied to study the stability of synchronization error sys-
tem. The simple condition guaranteeing network syn-
chronization is obtained. This condition depends on the
algebraic connectivity and on the parameters of the in-
dividual system. Also the simulations have been made
to illustrate the obtained condition. Some features pre-
sented here which are used for the estimation of the
derivative of the Lyaponov function can also be used to
study the stability of other nonlinear systems.
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