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Abstract
A modification of the numerical method of character-

istics is developed to solve the initial-boundary value
problem that arises when modeling the rectification pro-
cess in the column. The process is described by a system
of first-order hyperbolic equations. A specific peculiar-
ity of the model is in the boundary conditions of a special
type. At each of the boundaries, boundary conditions are
determined from a system of ordinary differential equa-
tions, which also includes unknown values of functions
on another boundary. A characteristic difference grid is
constructed on the base of a linear transformation of a
classical rectangular grid. Implicit second-order differ-
ence schemes are used, taking into account the features
of the problem at the boundaries. The advantage of this
approach is in consideration of the specifics of the propa-
gation of perturbations in hyperbolic equations. Numer-
ical implementation of the method was carried out. An
illustrative example shows the effectiveness of the pro-
posed modification of the characterization method. This
method is a base for further solution of optimal control
problems of flows in columns.
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1 Introduction
Compositions of hyperbolic and ordinary differential

equations are used when modeling a number of pro-
cesses of population dynamics [Alekseev, 1992], inter-
action of flows (liquid or gas) with solids [Vazquez,
2003], plasma dynamics [Faugeras, 2017], blood flow

dynamics [Ruan, 2008], nanoparticles [Wang, 2022],
thermal-engineering processes in tube furnaces [Demi-
denko, 2006b], etc. In particular, models of separa-
tion of mixtures in a distillation column are described
by first-order hyperbolic systems with non-standard dy-
namic boundary conditions given in the form of or-
dinary differential equations. By now, quite efficient
methods have been developed for solving optimal con-
trol problems of such problems [Arguchintsev, 2007;
Demidenko, 2006a]. Some of these methods are based
on solving optimization problems within the framework
of simplified models described by ordinary differential
equations [Gushchin, 2020]. However, in the transition
to more complex models, the problem arises of multi-
ple solving initial-boundary problems for combinations
of hyperbolic and ordinary differential equations. Typi-
cally, each iteration of the optimization method requires
solving similar problems for original and adjoint sys-
tems.

In this paper, a modification of the numerical method
of characteristics is developed to solve the initial-
boundary value problem that arises when modeling the
rectification process in the column. A specific peculiar-
ity of the model is in the boundary conditions of a spe-
cial dynamic type. At each of the boundaries, boundary
conditions are determined from a system of ordinary dif-
ferential equations, which also includes unknown values
of functions on another boundary. Therefore, the initial-
boundary value problem cannot be solved by solving the
initial value problems first for ordinary differential equa-
tions, and then by integrating the hyperbolic system. A
joint solution to the combination of hyperbolic and ordi-
nary differential equations is needed.

The authors propose a method of constructing a char-
acteristic difference grid based on a linear transfor-
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Figure 1. Scheme of operation of the distillation column.

mation of a classical rectangular grid. Next, implicit
second-order difference schemes are used, taking into
account the above-mentioned features at the boundaries.
The advantage of this approach is in consideration of
the specifics of the propagation of perturbations in hy-
perbolic equations. Numerical implementation of the
method was carried out. An illustrative example shows
the effectiveness of the proposed modification of the
method.

2 Problem statement
The mathematical model of separation processes of

mixtures can be described by the following first-order
system of hyperbolic equations [Demidenko, 2006a]:

∂(Hxxi)

∂t
− ∂(Lxi)

∂s
= kV (yi − p(s, t)xi) + Φxi

, (1)

∂(Hyyi)

∂t
+

∂(V yi)

∂s
= kV (p(s, t)xi − yi) + Φyi , (2)

N∑
i=1

xi = 1,

N∑
i=1

yi = 1, i = 1, . . . , N. (3)

Here t is a time variable, t ∈ [t0, t1]; s is a spatial
variable, s ∈ [s0, s1]; xi(s, t) and yi(s, t) are i-th
component concentrations in liquid and steam phases;
functions L(s, t), V (s, t) specify the flows of liquid and
steam in the column; functions Hk(s, t), Hy(s, t) deter-
mine the retention capacity of the column with respect
to liquid and steam; Φxi

(s, t),Φyi
(s, t) are the densities

of input flows of i-th components of the initial mixture;
constant k is a steam mass transfer coefficient. Functions

L(s, t), V (s, t), Hk(s, t), Hy(s, t),Φxi
(s, t),Φyi

(s, t)
and constant k are given.

A general process scheme is shown in Figure 1.
The incoming mixture is subjected to evaporation and

condensation procedures.
Initial conditions at t = t0 are given:

x(s, t0) = x0(s), y(s, t0) = y0(s). (4)

At the bottom of the column (s = s0), the inlet liq-
uid flow (L(s0, t)) enters the evaporator. Part of this
stream evaporates and returns to the bottom of the col-
umn (V (s0, t)), and the other part of liquid exits the sys-
tem as the bottom liquid product (W (t)) of the bottom
column. Boundary conditions at s = s0 are defined by
the following material balance equations:

d(Hx(s0, t)yi(s0, t))

dt
= L(s0, t)xi(s0, t)

− V (s0, t)yi(s0, t)−W (t)yi(s0, t),

dHx(s0, t)

dt
= L(s0, t)− V (s0, t)−W (t),

xi(s0, t0) = xi0(s0), Hx(s0, t0) = Hxk0,

i = 1, . . . , N. (5)

At the top of the column (s = s1), the steam flow en-
ters the condenser. Part of the flow of liquid leaving the
condenser returns to the column as a reflux (L(s1, t)),
and the other part exits the system as the finished prod-
uct (W (t)). The following material balance equations
determine boundary conditions s = s1:

dHx(s1, t)xi(s1, t)

dt
= V (s1, t)yi(s1, t)

− (L(s1, t) +D(t))xi(s1, t),

dHx(s1, t)

dt
= V (s1, t)− (L(s1, t) +D(t)),

xi(s1, t0) = xi0(s1), Hx(s1, t0) = Hxd0,

i = 1, . . . , N. (6)

Next, let’s make some simplifying assumptions.

1. The substance is a two-component mixture. The
content of the second component is determined by
the following formulas:

x2 = 1− x1 y2 = 1− y2.

2. The retention capacities are directly proportional to
flows:

Hx(s, t) =
1

c1
L(s, t), Hy(s, t) =

1

c2
V (s, t).

3. Flows are independent of s:

L(s, t) = L(t), V (s, t) = V (t).
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4. Raw materials are supplied only in liquid phase
only:

Φx = Φx(s, t), Φy = 0.

5. The incoming flow satisfies the following rule:

Φx(s, t) = xFFx(t) · ϕ(s),

xF = const, Fx(t) = D(t) +W (t),

where xF is a concentration, Fx describes an incom-
ing liquid flow, ϕ(s) is a distribution of the flow de-
pending on a spatial coordinate.

Then (1) – (6) can be written as the following initial-
boundary problem.

∂x

∂t
− c1

∂x

∂s
= B11(s, t)x+B12(s, t)y + b1(s, t), (7)

∂y

∂t
+ c2

∂y

∂s
= B21(s, t)x+B22(s, t)y + b2(s, t), (8)

∂x(s1, t)

∂t
= G11(t)y(s1, t) +G12(t)x(s1, t), (9)

∂y(s0, t)

∂t
= G21(t)x(s0, t) +G22(t)y(s0, t), (10)

x(s, t0) = x0(s), y(s, t0) = y0(s), (11)

where

B11(s, t) =
−c1kV (t)p̃(s, t)− L′(t)

L(t)
,

B22(s, t) = −(kc2 +
V ′(t)

V (t)
),

B21(s, t) = c2kp̃(s, t), B12(s, t) =
c1kV (t)

L(t)
,

b1(s, t) =
c1xFFx(t)ϕx(s)

L(t)
, b2(s, t) = 0.

G11(t) = −G12 = −L(t) +D(t)

Hxd0
,

G21(t) = −G22(t) =
V (t) + Fx(t)−D(t)

Hxk0
.

3 Method of characteristics
In the procedures of numerical solution of first-order

hyperbolic systems, classical difference approximations
of partial derivatives do not take into account the pecu-
liarities of the problem under consideration. To build ef-
fective numerical methods, it is necessary to construct
difference schemes with small steps and apply high-
order approximations. The numerical method of char-
acteristics is devoid of these deficiencies [Kulikovskii,
2001]. A traditional disadvantage of this method is the
non-classical (often curvilinear) type of difference grid.
In the problem under consideration, it is possible to con-
struct an analogue of a classic rectangular difference
grid. At the same time, standard second-order difference
approximations gives a good computational effect.

Characteristics in (7), (8) are two families of curves

s(1)(t) = −c1t+ C1, C1 = const

s(2)(t) = c2t+ C2, C2 = const.

Let s0 = 0, t0 = 0. First, in [0; s1] × [0, t1] we enter
a classical difference grid generated by the unit vectors
i⃗ = (1, 0), j⃗ = (0, 1) (steps s and t are equal to 1). After
that, we carry out a linear transformation of independent
variables using a matrix

L =

(
∆s ∆s
∆1t ∆2t

)
= (v⃗, w⃗).

Here ∆s = s1−s0
m , m is a parameter characterizing a

grid size; ∆1t = −c1 ·∆s and ∆2t = c2 ·∆s. So, v⃗ and
w⃗ are collinear with characteristic curves.

Hyperbolic equations (7), (8) will be transformed
into ordinary differential equations on the corresponding
characteristic curves. They can be approximated using
trapezoid formulas and be integrated together with the
boundary conditions. In this case, a stage-by-stage solu-
tion of ordinary differential equations (9), (10) is carried
out using previously calculated solutions on lower nodes.

Technically, the difference grid is generated as a graph.
Each node of the graph stores information about the co-
ordinate of the node of the grid, as well as the value of
the desired functions at a point. Additionally, the node
stores information about its type (central, left or right).
An array of grid nodes consists of references to graph
nodes, which represents the ability to work with the grid
in two modes (with the grid as a whole or selected sur-
faces). This graph representation is convenient to navi-
gate.
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An implicit second-order difference scheme is used for
inner points (s0 < sij < s1 and t0 < tij < t1):

xij − xi+1j

h1

=
B11(sij , tij)xij +B11(si+1j , ti+1j)xi+1j

2

+
B12(sij , tij)yij +B12(si+1j , ti+1j)yi+1j

2

+
b1(sij , tij) + b1(si+1j , ti+1j)

2
, (12)

yij − yij−1

h2

=
B21(sij , tij)xij +B21(sij−1, tij−1)xij−1

2

+
B22(sij , tij)yij +B22(sij−1, tij−1)yij−1

2

+
b2(sij , tij) + b2(sij−1, tij−1)

2
, (13)

h1 = (sij − si+1j)
2 + (tij − ti+1j)

2,

h2 = (sij − sij−1)
2 + (tij − tij−1)

2,

j = r0i + 1, r0i + 2, ...r1i − 1,

i = q0i + 1, q0i + 2, ..., q1i − 1.

Figure 2. left, center, right templates.

On the left border we use (12):

yij − yi+1j−1

h3

=
G21(sij , tij)xij +G21(si+1j−1, ti+1j−1)xi+1j−1

2

+
G22(sij , tij)yij +G22(si+1j−1, ti+1j−1)yi+1j−1

2
,

(14)

h3 = (sij − si+1j−1)
2 + (tij − ti+1j−1)

2

j = r0i, i = q0j .

On the right border we use (13):

xij − xi+1j−1

h3

=
G11(sij , tij)xij +G11(si+1j−1, ti+1j−1)xi+1j−1

2

+
G12(sij , tij)yij +G12(si+1j−1, ti+1j−1)yi+1j−1

2
,

(15)

j = r1i, i = q1j ,

To calculate nodes tij : tij − ∆t < t0 < tij we use
nodes formed by the intersection of the characteristics
with the line t = t0.

The pattern of the difference scheme in the central and
boundary regions is shown in Figure 2.

The difference scheme provides a second order of ap-
proximation and is absolutely stable [Rozhdestvensky,
1978; Ryabenky, 2010].

4 Numerical experiment
The programming language Python 3.12 and its

NumPy library were used for numerical experiments.
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Figure 3. The state of a hyperbolic system at a finite time.
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Figure 4. Solution discrepancy with different grid size.

The problem (7) – (11) is considered for the following
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parameters:

c1 = 1, c2 = 3, m = 20;

s0 = 0, s1 = 2 t0 = 0, t1 = 1.5;

x0(s) = es, y0(s) = 0;

B11(s, t) = −c1, B12(s, t) = − es

s+ 2
,

B21(s, t) =
s+ 2

es
, B22(s, t) =

c2
s+ 2

,

G11(t) =
es1 · sin t

(s1 + 2) · sin t− es1 · cos t
,

G21(t) =
2 · cos t)

cos t− 2 sin t
,

G22(t) = −G21(t), G12(t) = −G11(t).

This problem has an analytical solution

xa(s, t) = es cos t, ya(s, t) = (s+ 2) sin t.

The results of numerical calculations are shown in Fig-
ures 3 and 4.

Figure 3 shows graphs of solutions of the initial-
boundary problem at t1. Figure 4 illustrates the depen-
dence of the maximum modulus of the difference be-
tween numerical and analytical solutions on the number
of nodes of the difference grid. The best result is ob-
tained for maximum parameter value m = 160:

max
s∈[s0,s1]

|x(s, t1)− xa(s, t1)| = 0.0214,

max
s∈[s0,s1]

|y(s, t1)− ya(s, t1)| = 0.0210.

A significant improvement in accuracy occurred when
the parameter changed from m = 20 to m = 80.

In optimal control problems, we also have to deal with
conjugate problems that are solved in reverse time. A
modification of the proposed method for solving conju-
gate problems was constructed also. An additional step
is to rotate the grid.

In general, the calculations confirm effectiveness of the
proposed method.

5 Conclusions
We developed a numerical method of characteristics

for solution of a specific initial-boundary value problem
describing separation processes in a distillation column.
The boundary conditions are determined from ordinary
differential equations. The difference scheme provides
a second order of approximation and is absolutely sta-
ble. Numerical experiments prove effectiveness of the
method. This effective algorithm for solving the initial-
boundary value problem allows to proceed to the im-
plementation of methods for optimal control of flows in
columns using variational optimality conditions for such
problems [Arguchintsev, 2021].
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