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Abstract
Poincare maps are derived to describe antiphase spik-

ing in class B multimode lasers. Analytical conditions
are determined for splay states and clustering of spikes
associated with different longitudinal laser modes. Sta-
bilization of splay states is proved in presence of small
external signal.
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1 Introduction
Many systems like biological or artificial neural net-

works are characterized by global nonlinear coupling
(all-to-all) between oscillators. In this case there can
exist phase-synchronized periodic states – splay states
– discussed firstly in connection withN globally cou-
pled Josephson junctions [Strogatz and Mirollo, 1993].
In splay states all elements oscillate with the same
waveform but each mode has its phase shifted by1/N
of a period from its neighbor.
In laser physics, splay states have been observed

in multimode lasers with intracavity second-harmonic
generation [Bracikovski and Roy, 1991; Wiesenfeld,
1990], in deeply modulated lasers [Bielawski, 1992;
Otsuka, 1991], and in distributed laser arrays [Silber,
1993]. The stable splay states of at least five modes
have been experimentally observed. In addition, group-
ing states (or clusters) in which modes oscillate still
out of phase but with different waveforms and periods
has been numerically found in deeply modulated mul-
timode lasers [Otsuka and Sato, 1996].
Such attractors appear with a large multiplicity. There

coexist(N − 1)! splay states as any renumbering of
equivalent oscillators is possible. Stability of the splay
states near the threshold of oscillatory instability has
been discussed in the framework of the bifurcation the-
ory and in the case of spiking as well. The splay state
has been shown to be marginally stable for finite pulse

width while strictly stable forδ-like pulses [Zimmler,
2007; Calamai, 2009]. The number of splay states
grows much faster than the dimension2N of the phase
space. Hence, it was supposed the basins of attraction
shrinks rapidly and noise induced switching between
attractors should be [Wiesenfeld and Hadley, 1989],
that was called attractor crowding.
In this paper we show that splay states can be stabi-

lized by small external lighting or by sufficiently high
level of spontaneous emission contrary to predicted at-
tractor crowding. Stabilization can be achieved for both
finite-width and short-width pulsing. To study such
pulsing we derive asymptotically Poincare maps from
the original differential equations. The fixed points of
the maps can be used for analytical reconstruction of
limit cycles. As a result, we find initial conditions lead-
ing to splay states and clustered states, determine their
stability and explain mechanism of switching between
them as dynamical instability. We consider models of
multimode solid-state lasers representing two types of
spiking behavior: (i) pulses of duration comparable
with the period of oscillations and (ii) spikes of asymp-
totically small duration. The first type of oscillations
appears in Nd:YAG laser with intracavity second har-
monic generation under relatively high pumping rate.
The second type has been observed in the dynamics of
a semiconductor laser with periodically driven injec-
tion current.

2 Multimode laser with intracavity second har-
monic generation

Dynamics ofN longitudinal modes is governed by the
equations given in [Bracikovski and Roy, 1991]:

ηİk = Ik

[
Gk − α + εIk − 2ε

N∑
r=1

Ir

]
,

Ġk = γ −Gk

[
1 + (1 + β)Ik + β

N∑
r=1

Ir

]
, (1)



whereIk(Gk) is the intensity (gain) of the modek, r 6=
k, η is the ratio of the cavity round trip and fluorescent
lifetime, α, γ, β are proportional to the cavity loss, the
gain, and the cross-saturation parameter, respectively,ε
describes the conversion efficiency of the fundamental
harmonic into the second harmonic.
With substitutions

η′ =
( η

α

)1/2

, g =
ε

αη̄
, q =

γ

α
− 1,

zk =
Gk/α− 1

η′q
, uk =

Ik

q
, t′ =

t

η′
(2)

we rewrite Eq.(1) in the normalized form

u̇k = quk

[
zk − guk − 2g

N∑
r=1

ur

]
+ µ,

żk = 1− uk − β

N∑
r=1

ur − η′f(zk, uk), (3)

where

f(zk, uk) = zk

(
1 + quk + β

N∑
r=1

qur

)
,

and we addµ to model the external lighting, in particu-
lar, spontaneous emission. Let us specify the values of
parameters. From the experimental work [Bracikovski
and Roy, 1991] we take the ratio of the cavity round
trip and fluorescent lifetimeη = 8 × 10−7, the cav-
ity loss α = 10−2, the gainγ ∼ 0.08, the cross-
saturation parameterβ ∼ 0.6, and the conversion effi-
ciency of the fundamental intensity into doubled inten-
sity ε = 5 × 10−5. That gives normalized parameters
η′ ∼ 10−3 ¿ 1, q ∼ 10 À 1, g ∼ 0.5, β < 1.
The physical situation, therefore, implies a studying of
Eqs.(3) in the limitη′g−1 ¿ (gq)−1 ¿ 1, i.e. it is rea-
sonable to consider the case of sufficiently high conver-
siong and large pumping rateq while η′ is a very small
parameter. Under such parameters antiphase relaxation
oscillations are observed.
Numerical simulations show that the dynamics of sys-

tem (3) withη′ ¿ 1 is very similar to the dynamics
with η′ = 0. Contrary to that the relaxation solutions
with small µ ¿ 1 (i.e. with external lighting) and
µ = 0 appear to be quite different. Thus we will study
the system (3) in two cases

q À 1, η′ = 0, µ = 0 or µ ¿ 1. (4)

In order to investigate relaxation oscillations we apply
here the special asymptotic method developed in our
previous works [Grigorieva and Kashchenko, 1993].
Following this method we fix the Poincaré section and

choose the set of initial conditions as the vectorξ ∈ S,
S ⊂ RN−1. Then we construct uniform asymptotic ap-
proximations of solutions and show that after a certain
time the solution again falls withinS. The Poincare op-
erator of the shifting along the trajectories which maps
ξ from S onto ξ̄ that is also fromS, is thereby analyt-
ically defined. To a fixed point of the operator there
corresponds a periodic solution of Eqs.(3) of the same
stability. Here we restrict ourselves to a study of only
the main terms of the asymptotic expansion.

2.1 Two coupled modes
Dynamics of two coupled modes is governed by the

system (3) whereN = 2. We consider below inhomo-
geneous solutions for which during the pulse of one
mode t ∈ (ti, ti+1) with uk(t) > 1, another mode
(modes) is suppressed,uj 6=k(t) ¿ 1. It is conve-
nient, therefore, to choose the Poincaré section so that
uk(ti) = 1, u̇k(ti) > 0. The notations are shown
in Fig.1. The particular form of oscillations repro-
duces well the experimentally observed form of pulses
[Bracikovski and Roy, 1991].

Figure 1. Two-modes antiphase relaxation solutionu1(t), u2(t)
to Eqs.(3) forv = 104, g = 0.5, β = 0.1 andµ = 0. Tempo-

ral moments at whichu1(t0) = u2(t1) = u1(t2) = ... = 1
correspond to the moments wherez1(t0) = c1, z2(t1) =
c̄1, ... .

Let us fix the initial momentt0 = 0 at the Poincare
sectionu1(0) = 1, u̇1 > 0, corresponding to the onset
of the pulse of the first mode and determine the initial
conditionsξ = (c1, c2,m2) as follows:

c1 = z1(0), c2 = z2(0), m2 = u2(0), (5)

We integrate Eqs.(3) on the intervalt ∈ (0, t1) tak-
ing into account conditionsq À 1 and u1(t) >
1, u2(t) ¿ 1. At the momentt = t1 one getsu2(t1) =
1, u̇2(t1) > 0, and u1(t1) = O(1), u̇1(t1) < 0.
Hence, the initial situation (5) appears again with re-
placingu1 ↔ u2, z1 ↔ z2 and

c̄1 = z2(t1), c̄2 = z1(t1), m̄2 = u1(t1), (6)



wheret1 = t1(m2, c1, c2) is the root of the transcen-
dental equation. Details of the derivation of the map is
given in [Grigorieva, 2004].
Note, the map (6) is valid if for any iteration the con-

ditionsc1 > g(1+2m2), c2 < g(m2 +2) are fulfilled.
The fixed point of this map corresponds to the limit cy-
cle – antiphase periodic solution to the original system
(3). Without loss of generality three-dimensional non-
linear map (6) can be reduced to the one-dimensional
map

c̄1 = g(1 + β)− βc1 + (1− β)T, (7)

whereT = T (c1) = t1 means the duration of the pulse.
In the case ofµ = 0 the pulse durationT0(c1) can be

found as the positive root of the equation

T 2
0 + 2T0

β(g − c1)− g

1− β
− 2g

(2− β)(c1 − g)
1− β

= 0.(8)

In presence of small external lightingµ 6= 0 the pulse
width essentially decreases. However the width weakly
depends onµ if µ is small but not exponentially small,
exp(−qA) ¿ µ ¿ 1. ThenTµ(c1) can be found as
the positive root of the equation

T 2
µ(1− β)/2− Tµ[g − β(c1 − g)] = 0. (9)

From Eq.(8) and Eq.(9) we conclude thatT0 < Tµ. It
follows from the fact that the minimal intensity of the
suppressed modeu2(t) ∼ exp(−qA) is exponentially
small in the system without external lighting,µ = 0,
while in the system with external lighting0 < µ ¿ 1)
the minimal value is of the orderu2(t) ∼ µ/q.
Both maps are shown in Fig.2. For the system without

external lighting,µ = 0, map (7),(8) has the fixed point
c∗1 and the corresponding pulse width is

T ∗0 = 2g

(
1 +

2
(1− β)2

)
. (10)

In the case0 < µ ¿ 1 the fixed point of the map (7),(9)
reads asc∗1µ = g(3−β)/(1−β) and the corresponding
pulse width is

T ∗µ = 2g
1 + β

(1− β)2
. (11)

The pulse amplitude as well as full description of re-
laxation pulse form are given in [Grigorieva, 2004]
Linear stability analysis of the fixed point shows that

such limit cycles are stable for anyβ < 1 because its
Floquet multiplier isλ0 = 2

5 + O(β) in the case of
µ = 0 or λµ = β + O(β2) in the case ofµ ¿ 1.
Note, the conditionq À 1 for relaxation oscillations

is not very strict. In instance, analytically given by
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Figure 2. (a) Map (7),(8) forµ = 0 and (b) map (7),(9) forµ =
0.01 underg = 0.5, β = 0.1 .

Eqs.(11) valuesc∗1 = 3.338, T ∗ = 3.47 for the pa-
rametersq = 7.5, g = 0.5, β = 0.1 approximate well
numerical ones,c∗1 = 3.35, T ∗ = 3.71. It is satisfac-
tory even in the case ofq ∼ 3.

2.2 Three coupled modes
Let us consider the dynamics of three coupled modes

governed by Eqs.(3) withN = 3. The initial conditions
read

u1(0) = 1, z1(0) = c1,

u2(0) = eqm2 , z2(0) = c2, (12)

u3(0) = m3, z3(0) = c3,

wherem2 < 0, m3 > 1, c1 > c2 > c3 are arbitrary
values from the region providing the onset of the first
mode pulse.
We integrate Eqs.(3) on the intervalt ∈ (0, t1) where

u1(t) > 1, u2(t) ¿ 1, u3(t) ¿ 1. The momentt1 =
min{T1, T2} corresponds to the conditionsu2(T1) =
1, u3(T2) = 1. Obviously, two ways are then possible:

1. If T1 < T2 the intensity of the second mode be-
comes: u2(t1) = 1, u̇2(t1) > 0 , of the first
one: u1(t1) = O(1), u̇1(t1) < 0, and of the
third one: u3(t1) = o(1). The initial situation
appears again with (right) shift of mode indexes



(1, 2, 3) → (2, 3, 1) and replacing

m̄2 = f(t1, c3), m̄3 = u1(t1),
c̄1 = z2(t1), c̄2 = z3(t1), c̄3 = z1(t1). (13)

2. If T1 > T2 the intensity of third mode becomes:
u3(t2) = 1, u̇3(t2) > 0 , of the first one:
u1(t2) = O(1), u̇1(t2) < 0, and of the sec-
ond one: u2(t̃2) = o(1). The initial situation
appears again with (left) shift of mode indexes
(1, 2, 3) → (3, 1, 2) and replacing

m̄2 = m2 + f(t1, c2), m̄3 = u1(t1),
c̄1 = z3(t1), c̄2 = z2(t1), c̄3 = z1(t1). (14)

Thus the conditionT1 = T2 divides the phase space
(c1, c2, c3, m2, m3) into regions with different dynam-
ical rules.
Without loss of generality Eqs.(13),(14) can be re-

duced to the three-dimensional map




c̄1

c̄2

m̄2


 =








f1(T1)
f2(T1)
f3(T1)


 , T1 < T2




f2(T2)
f1(T2)
−f3(T2)


 , T2 < T1

(15)

wheref1(Ti) = c2 +(1−β)Ti−β(c1− g), f2(Ti) =
g+(1−β)Ti−β(c1−g), f3(Ti) = (g−c2)Ti−m2 and
values of the functionsT1,2(c1, c2,m2) can be found as
the positive roots of quadratic equations

d2T
2
1 + T1(c2 − c3 + d1) + (d0 + m2) = 0,

d2T
2
2 + d1T2 + d0 = 0,

with d0 = g(β − 2)(c1 − g), d1 = c3 + β(g − c1) −
2g, d2 = (1− β)/2.
If T1 < T2 for any iteration then the map has the

fixed point(c∗1, c
∗
2, m

∗
2). This scenario corresponds to

the pulses of the duration

T ∗1 = g[2 + 3(1− β)−2] (16)

for modes in following sequence:

S1,2,3 : 1, 2, 3, 1, 2, 3, ... (17)

i.e. one of the splay states is realized. This fixed point
is unstable, hence, a few iterations later the phase tra-
jectory crosses the surfaceT1 = T2. The second sce-
nario in the map given by Eqs.(15) provides phase tra-
jectory returns into the first region as shown in Fig.3. In

such a way different pulse sequences can be created. In
particular, if conditionsT1 < T2 andT1 > T2 strictly
alternate then pulsing of modes is observed in the se-
quence

C1
2,3 : 1, 2, 1, 3, 1, 2, 1, 3, ... (18)
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Figure 3. Attractor of the map (15) presented asTi+1(Ti) for

g = 0.5, β = 0.1. The parts1s2 corresponds to the splay

stateS1,2,3, the parts marked byc1, c2 – to the cluster stateC1
2,3.

Such a regime can be interpreted as a cluster state be-
cause modes are divided in two groups: pulses of mode
1 oscillate with twice frequency and smaller maximal
intensity than pulses of modes2, 3. This state is also
unstable, hence, few iterations later the system falls
again into the vicinity of the fixed point (16). Doing
so the switching to another splay stateS1,3,2 can oc-
cur due to possible permutation of mode indexes. One
can see, therefore, a typical picture of intermittency as
shown in Fig.4. There can also exist various alternative
states due to permutation of mode indexes.
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Figure 4. Results of the numerical integration of Eqs.(3) forN =
3, η′ = 10−2, q = 9.5, g = 0.5, β = 0.1. Switching

between splay statesS1,2,3 occurs through cluster stateC1
2,3 .

Thus the obtained map predicts dynamical instability



in the form of intermittency between the splay states
divided by grouping states in the case ofµ = 0.
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Figure 5. Results of the numerical integration of Eqs.(3) forN =
3, η′ = 10−2, q = 9.5, g = 0.5, β = 0.1. Stable splay

state occurs due to external lightingµ = 0.01.

Let us consider the effect of small external lighting
µ 6= 0. In this case the momentt1 of the mode jump
is determined by the equationt1 = min{Tµ1, Tµ2}
where

Tµi =
β(c1 − g)− ci

1− β
.

As far asc2 > c3 have been chosen then the inequal-
ity T1 < T2 is valid for any iteration. Hence the only
scenario leading to the splay state is possible. The nu-
merical example is shown in Fig.5. Thus small external
lighting can stabilize the phase-synchronous behavior.
This conclusion does not change if we apply noisy term
with nonzero mean value instead of constantµ to model
spontaneous emission. Namely, the sequence of mode
pulsing is ordered while pulse amplitudes can slightly
vary.
The obtained results can be expanded to the case of

arbitrary quantity of modes. AsN increases andµ = 0
the number increases of subspaces given by conditions
T1 = T2, T1 = T3, ... T1 = TN−1 whereTk, k =
2, ...N − 1, are roots of the equations

T 2
k (1− β)/2 + Tk[ck+1 + β(g − c1)− 2g] +

+g(β − 2)(c1 − g) + mk+1 = 0.

That explains switching between various sequences of
modes leading to complex temporal structures. The ex-
ternal lightingµ 6= 0 or spontaneous emission of the
sufficient level can stabilize the splay states because it
is possible to choose the initial conditions resulting in
T1 < T2 < T3 < ... < TN−1 for any iteration of the
corresponding map.

3 Multi-mode semiconductor laser with periodi-
cally driven pumping rate

Dynamics of multi-mode semiconductor laser with
periodically driven pumping rate in the case of homo-

geneous linewidth can be described by following equa-
tions [Otsuka, 1991; Otsuka and Sato, 1996]:

u̇k = vuk

[
n0 − nk

2
− 1

]
,

ṅk = n0uk − nk

(
1 + β

N∑
r=1

ur

)
, (19)

ṅ0 = q − n0 −
N∑

r=1

ur(n0 − nr

2
),

whereuk is the intensity ofk-mode, k = 1, 2, ..., N ,
r 6= k, n0 is the constant term of the spatial Fourier ex-
pansion of the population inversion,nk are first order
components of the Fourier expansion of the population
inversion,η is the ratio of photon damping time in the
cavity to the relaxation time of inversion of population
created by the pumping rateq = q0 + q1 cos(ωt + φ)
with q0 is the constant part of the pump normalized to
the pumping rate at the first threshold of generation,q1

is the modulation amplitude, andω is the modulation
frequency. The models incorporate cross saturation of
population inversion among modes due to spatial hole-
burning effect providing global mode coupling. Nu-
merical simulations show that far away the threshold,
splay states are interrupted by intervals where modes
oscillate still out of phase but with different waveforms
and periods.

For class-B lasers including semiconductor lasers,
some solid-state lasers and CO2 lasers the parameter
v ∼ 103 À 1 that provides regimes of spiking type
under deep modulation of the pumping rate,q1 ∼ q0.
The duration of spikes∆ → 0 underv → ∞. Note,
in the previous case of high pumping rate,q À 1, the
duration of pulses was comparable with the period of
oscillations,∆ ∼ T/N .

Let us choose the initial conditions for system (19)
in such a way that a pulse of the mode numbered1
starts att = 0 while the intensities of other modes are
exponentially small:

ui(0) = evdi , ni(0) = ci, Φ(0) = ϕ, (20)

wherec1 < c0− 1 < c2 < c3 < ... < cN , dN < ... <
d2 < d1 = 0. Integrating Eqs.(19) by the asymptotical
method given in [Grigorieva and Kashchenko, 1993],
one can get at the momentt = T (c0, c2, d2, ϕ) the sys-
tem finds itself into the state analogous to the state (20)
with replacing of mode indexes(1, 2, ..., N − 1, N) to



(2, 3, ..., N, 1) and parametersc, ci, di, ϕ to

c̄0 = q0 + (c− p− q0 + K cosψ)e−T

−K cos(ωT + ψ),
ϕ̄ = ϕ + ωT, mod 2π,

c̄k = ck+1e
−p−T ,

d̄k = dk+1 − dk +
(c2 − ck+1)

2
e−p−T ,

c̄N = [c1(1− p) + c0p]e−T , (21)

d̄N = −dN−1 +
(c2 − c1)

2
e−p−T ,

wherek = 1, ..., N − 1, p = p(c0, c1) is the pulse
energy andT = T (c0, c2, d2, ϕ) means the interval be-
tween pulses determined as the first positive root of the
transcendental equations.
Attractors of2N -dimensional map (21) determine dy-

namical regimes of system (19). The fixed point of
the map corresponds to spiking oscillations with a pe-
riod T = 2π/ω which exists if the inequalityd2 <
(1 − e−T )[(c2 − c1)(1 − p) − c0]/2 is valid for any
iteration of the map. Such a point corresponds to the
splay-state.
Numerical simulations show that basins of such at-

tractors are relatively narrow. They coexists with
chaotic attractors. The initial conditions leading to syn-
chronous splay states can be found using the fixed point
of the map (21). Also, small external lighting increases
the basin of the regular splay states.

4 Conclusion
We have derived the finite-dimensional maps which

describe adequately antiphase dynamics of multimode
lasers far away the oscillatory threshold. Fixed points
of these maps determine spiking oscillations of vari-
ous forms and of different type of synchronization cor-
responding to splay states and clustered states. The
obtained analytical results can be further applied to
the problems of control switching among periodic and
cluster states by special injecting signal as it has been
done for modulated lasers by [Otsuka and Sato, 1996].
ForN ≥ 3 the obtained maps predict the phase space

to be divided into the regions with different dynamical
rules. They describe analytically both laminar phase
near fixed points and bursting. As far as unstable phase
trajectory reaches one of the separating surfaces the
switching occurs to another solution. In this way the
discrete maps determine alternation between ruins of
periodic attractors. Such a scenario of instability is
not similar to the attractor crowding [Wiesenfeld and
Hadley, 1989]. The last one implies noise-induced
switching between(N − 1)! coexisting splay states be-
cause their attractive basins shrink rapidly as the sys-
tem sizeN increases. Contrary to that, our approach
elucidates dynamical nature of switching between an-
tiphase solutions of different types. The inclusion of

noisy term modelling relatively high spontaneous emis-
sion leads to stabilizing of periodic states.
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