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Abstract: Feasibility of nonlinear and adaptive control methodologies in multivari-
able linear time-invariant systems with state space realization {A,B,C} has appar-
ently been limited by the standard strict passivity (or positive realness) conditions
that imply that the product CB must be positive definite symmetric. A recent
paper has managed to mitigate the symmetry condition, requiring instead that
the positive definite and not necessarily symmetric matrix CB be diagonalizable.
Although the mitigated conditions were useful in proving pure stabilizability with
Adaptive Controllers, the Model Tracking question has remained open. This paper
further extends the previous results, showing that the new passivity conditions can
be used to guarantee stability of the adaptive control system and asymptotically
perfect model tracking. Copyright c©2007 IFAC.
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1. INTRODUCTION

Consider the square system

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

Here, x is the n-dimensional state vector, u is
the m-dimensional input vector and y is the m-
dimensional output vector, and A, B, and C are
matrices of corresponding dimensions. Because in
various methodologies of nonstationary control
the stability analysis concerns both the state
and the dynamical gains, stability of the control
system has been treated with positive definite
quadratic Lyapunov functions of the form

V (t) = xT (t)Px(t)

+ tr[(K(t)− K̃)Γ−1(K(t)− K̃)T ]. (3)
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Here, K(t) is the adaptive gain used with the
controller u(t) = K(t)y(t) and K̃ represents an
ideal output feedback gain. Define

AK = A−BK̃C (4)

Although the proofs of stability using (3) do
not require the original system to be strictly
positive real (SPR), they require the existence
of a constant output feedback gain K̃ (unknown
and not needed for implementation) that could
make the fictitious closed-loop system {AK , B, C}
is SPR. The common state-space definition of the
strictly positive-realness property in linear time
invariant systems is:

Definition 1. A linear time-invariant system with
a state-space realization {AK , B, C} , where AK ∈
Rn,n, B ∈ Rn,m, C ∈ Rm,n, with the m ∗ m
transfer function T (s) = C(sI−AK)−1B, is called
‘strictly passive (SP)’ and its transfer function
‘strictly positive real (SPR)’ if there exist two
positive definite symmetric (PDS) matrices, P
and Q, such that the following two relations are
simultaneously satisfied:



PAK + AT
KP = −Q (5)

PB = CT . (6)

Relations (5)-(6) have been shown to be very
useful in nonlinear control applications and in
particular in control with uncertainty or in adap-
tive control (Fradkov, 1976), (Sobel et al., 1982),
(Steinberg and Corless, 1985), (Barkana and
Kaufman, 1985), (Zeheb, 1986), (Fradkov and
Hill, 1998). The original system that only needs
a constant output feedback to become strictly
positive real has been called ‘almost strictly posi-
tive real (ASPR)’ (Barkana and Kaufman, 1985),
(Barkana, 1987), also called ‘feedback passive’ or
‘passifiable’. For quite a long time, the mean-
ing and practical implications of ASPR systems
has remained rather obscure within the adap-
tive control community, although even as early
as 1976 has been shown (Fradkov, 1976) that
any minimum-phase system with a positive def-
inite symmetric matrical product CB can be ren-
dered SPR via constant output feedback, and
many other works have re-invented and further
developed the idea since (see (Barkana, 2004a)
and the references therein for a brief history and
direct proof of this important statement). The
importance of this specific class of systems has
gradually gained more and more acceptance in the
control community (Kokotovic and Arcak, 2001).
Moreover, the class of ASPR systems proved to be
more general that initially thought when Huang et
al. (Huang et al., 1999) showed that if a system
cannot be made SPR via constant output feed-
back, no dynamic feedback can render it SPR.

However, from relation (6) and its transpose one
gets

BT PB = BT CT = CB > 0. (7)

The non-singularity of CB implies that the trans-
fer function T (s) has n poles and n−m zeros, yet
(7) also implies that the customary SPR relations
can be applied only to systems where the product
CB is positive definite symmetric (PDS).

While the implied positivity of CB could be ex-
pected and understood as a natural extension of
the sign condition in SISO systems, the symme-
try condition seemed to limit the applicability of
adaptive control techniques, as its satisfaction in
uncertain systems may be difficult to guarantee,
in general. Although both requirements seemed to
be needed for the proof of stability with adaptive
controllers, a recent publication (Barkana, Teix-
eira and Hsu, 2006) showed that the symmetry
condition can be mitigated and that the positive
definite matrix CB must only be diagonalizable.

2. MITIGATION OF THE SYMMETRY
CONDITION

While investigating ways that would possibly mit-
igate the symmetry assumption on the product
CB and thus extend the feasibility of the SPR
concept to larger classes of systems, it was intu-
itive (Barkana, Teixeira and Hsu, 2006) to try the
new Lyapunov function

V (t) = xT (t)Px(t)
+ tr[S(K(t)− K̃)Γ−1(K(t)− K̃)T ST ].

(8)

Note that any nonsingular matrical factor S (un-
known and not needed for implementation) would
allow the matrical product in the second term in
(8) to be positive definite symmetric and thus the
trace to be positive definite. Borrowing a defini-
tion that has been introduced by Fradkov and his
colleagues (Fradkov, 2003), (Peaucelle, Fradkov
and Andrievski, 2005), the applicability of pas-
sivity conditions was extended (Barkana, Teixeira
and Hsu, 2006) via the following definition:

Definition 2. Under the assumption of Definition
1, the state-space realization {AK , B, C} is called
W-Strictly Passive (WSP) and its transfer func-
tion T (s) = C(sI − AK)−1B is called W-Strictly
Positive Real (WSPR) if there exist three positive
definite symmetric matrices, P , Q, and W = ST S
such that the following two relations are simulta-
neously satisfied:

PAK + AT
KP = −Q (9)

PB = CT W (10)

It is important to note that the symmetry con-
dition for W = ST S has initially originated in
the requirement that S in the Lyapunov function
(8) be nonsingular and the second term in (8) be
positive definite.

Furthermore, it was shown (Barkana, Teixeira and
Hsu, 2006) that a system can become WSP via
constant output feedback if it is minimum-phase
and if the positive definite and not necessarily
symmetric product CB is diagonalizable. Finally,
it was also shown that the WSP conditions (9)-
(10) are sufficient conditions that can guaran-
tee stability with adaptive output feedback con-
trollers (Barkana, Teixeira and Hsu, 2006).

The development in (Barkana, Teixeira and Hsu,
2006) had thus finally ended with a straightfor-
ward result that managed to mitigate a symmetry
condition that had been around for more than 40
years.

Note: Although it mitigates a long established
symmetry condition, Definition 2 still excludes
those systems where the positive definite CB



product has a regular Jordan, rather than diag-
onal, form. While recommending (Barkana, Teix-
eira and Hsu, 2006) for publication, one reviewer
suggested that maybe the symmetry condition on
W could also be eliminated. As this suggestion
reflected this author’s own long unfulfilled desire,
this renewed challenge has ”almost” led to the
next mitigation of the passivity conditions. The
attempted next step is based on the observation
that, although the product of two positive definite
matrices M and N is is not necessarily posi-
tive definite, the trace of the product, tr(MN),
is positive definite if at least one matrix is also
symmetric. With this observation, one can use the
new Lyapunov function

V (t) = xT (t)Px(t)
+ tr[W (K(t)− K̃)Γ−1(K(t)− K̃)T ].

(11)

The second term in (11) (i.e., the trace) is thus
positive definite even if the positive definite ma-
trix W is not necessarily symmetric. This could
apparently lead to further relaxation of the passiv-
ity conditions, because one can show that the ex-
istence of such a W that is PD and not necessarily
symmetric is then guaranteed if the product CB
has just all eigenvalues in the right half plane, even
if CB is neither symmetric nor Positive Definite.
However, as we show in this paper, although some
examples may show stability, at least at this stage
this attempt finally proved to be an exercise in fu-
tility because, ultimately, the Lyapunov derivative
does require W to be Positive Definite Symmetric.

To avoid any eventually misleading interpretation
of the new definition, we again emphasize here
that the (fictitious) matrix W is not needed or
used, that conditions (9)-(10) represent properties
of the original plant {A,B, C}, and the controller
controls the output y(t) = Cx(t) of this original
plant. Still, it is interesting to mention that these
WSP relations are equivalent to requiring that an
associated (fictitious) system {AK , B, WC}, with
the output given by z(t) = Wy(t), be Strictly Pas-
sive and its associated transfer function, Ta(s) =
WC(sI −AK)−1B, be SPR, in plain accord with
the customary Definition 1.

We will show that this simple result allows the ap-
plications of the useful passivity properties with-
out requiring the customary CB symmetry con-
dition.

3. APPLICATION OF THE WASP
PROPERTY TO ADAPTIVE CONTROL

As most systems are not WSP, we called WASP
those systems that only require an (assumably
unknown) constant, positive definite, gain K̃e

to render the fictitious closed-loop system WSP.

In other words, given the system (1)-(2), if one
can assume that the (possibly unstable) plant is
minimum-phase and that all eigenvalues of CB
are located in the right half-plane, the fictitious
control

u(t) = K̃ey(t) (12)

would result in the closed-loop system

ẋ(t) = [A−BK̃eC]x(t) + Bv(t) (13)

y(t) = Cx(t) (14)

that satisfies the WSP relations

P [A−BK̃eC] + [A−BK̃eC]T P = −Q (15)

PB = CT WT (16)

The new conditions and definitions are important
only if one can show that they are as useful as
the customary SPR conditions for the proofs of
stability with adaptive controllers. Here we note
that with the publication of (Barkana, Teixeira
and Hsu, 2006), some colleagues have expressed
their concern that the uncertainty in W may
actually eliminate the usefulness of the WASP
relations in the tracking case. Therefore, instead
of the simple adaptive stabilizing illustration of
(Barkana, Teixeira and Hsu, 2006), in this paper
we decided to present a full adaptive model track-
ing case that uses the Simple Adaptive Control
(SAC) methodology (Kaufman, Barkana and So-
bel, 1998), (Barkana, 2007). Specifically, we as-
sume that the plant output is required to track
the output of a ‘model’.

3.1 Model following with SAC

In SAC methodology, the so-called ‘model’ is sim-
ply a stable plant that only serves to generate the
trajectory that the plant should follow, and for
this reason it is also called ‘command generator’
and the methodology is sometimes called ‘com-
mand generator tracking’. Otherwise, the ‘model’
is not required to reproduce the plant or to use
any prior knowledge about the plant and can also
be of any (lower or larger) order insofar as it
generates the desired trajectory. As usual in adap-
tive control, one first assumes that the underlying
fully deterministic output model tracking problem
is solvable. A recent publication (Barkana, 2005)
shows that if the Model Reference uses a step
input in order to generate the desired trajectory,
the underlying tracking problem is always solv-
able. If, instead, the model input command is
itself generated by an unknown system of order
nu, the model is required to be sufficiently large



to accommodate this command (Barkana, 1983),
(Kaufman, Barkana and Sobel, 1998), or

nm + m ≥ nu (17)

The model is:

ẋm(t) = Amxm(t) + Bmum(t) (18)

y(t) = Cmxm(t) (19)

Here, xm is the nm-dimensional state vector, um

is the m-dimensional input vector and ym is the
m-dimensional output vector, and Am, Bm, and
Cm are matrices of corresponding dimensions.

The simple adaptive control (SAC) algorithm
(Sobel et al., 1982), (Barkana and Kaufman, 1985)
monitors the tracking error

ey(t) = ym(t)− y(t) (20)

and the available model variables, xm and um, and
uses the following reference vector

rT (t) = [ey(t) xm(t) um(t)]T (21)

to generate the adaptive control gains

K(t) = [Ke(t) Kx(t) Ku(t)] (22)

through the procedure

K̇(t) = ey(t)rT (t)Γ (23)

and the adaptive control signal

u(t) = K(t)r(t) (24)

= Ke(t)ey(t) + Kx(t)xm(t) + Ku(t)um(t).

Here, Γ is a positive definite scaling matrix that
regulates the rate of adaptation. The underlying
deterministic tracking problem assumes that there
exists an ideal control

u∗(t) = K̃xxm(t) + K̃uum(t). (25)

that could keep the plant along an ideal trajectory
x∗(t) that would asymptotically perform perfect
tracking. In other words, the ideal plant

ẋ∗(t) = Ax∗(t) + Bu∗(t) (26)

y∗(t) = Cx∗(t) (27)

moves along ”ideal trajectories” such that

y∗(t) = ym(t) (28)

A recent work (Barkana, 2005) has given a thor-
ough treatment to the existence of the underlying
ideal control gains. It was shown that such ideal

control gains always exist under the minimum-
phase assumption. Therefore, here we can assume
that the underlying problem is solvable and thus,
that some ideal gains K̃x and K̃u exist. Because
the plant and the model can have different dimen-
sions, the ‘following error’ ex(t) is defined to be
the difference between the ideal and the actual
plant state

ex(t) = x∗(t)− x(t) (29)

and correspondingly

ey(t) = ym(t)− y(t) = y∗(t)− y(t) = Cex(t) (30)

Differentiating (29) gives:

ėx(t) = ẋ∗(t)− ẋ(t)

= Ax∗(t) + Bu∗(t)−Ax(t)−Bu(t)(31)

= Aex(t)−B(u(t)− u∗(t))

Adding and subtracting BK̃eey(t) above gives

ėx(t) = (A−BK̃eC)ex(t)−B
[
K(t)− K̃

]
r(t)(32)

where for convenience we denoted

K̃ = [K̃e K̃x K̃u]. (33)

This long introduction allows the proof of the
following theorem of stability:

Theorem 1. Under the WASP conditions and the
assumptions of this subsection, all gains and state
variables of the Adaptive Control system repre-
sented by (23) and (32) are bounded and the
system performs asymptotically perfect tracking.

PROOF. The positive definite Lyapunov func-
tion (11) applied to the adaptive system (23) and
(32) is

V (t) = eT
x (t)Pex(t)

+ tr[W (K(t)− K̃)Γ−1(K(t)− K̃)T ].
(34)

At this stage, we do not require W to be symmet-
ric. The derivative of V (t) is

V̇ (t) = ėT
x (t)Pex(t) + eT

x (t)P ėx(t)
+ tr[WK̇(t)Γ−1(K(t)− K̃)T ]
+ tr[W (K(t)− K̃)Γ−1K̇T (t)]

(35)

V̇ (t) = eT
x (t)P (A−BK̃C)ex(t)

+ eT
x (t)(A−BK̃C)T Pex(t)

− eT
x (t)PB[K(t)− K̃]r(t)

− rT (t)[K(t)− K̃]T BT Pex(t)
+ tr[Wey(t)rT (t)ΓΓ−1(K(t)− K̃)T ]
+ tr[W (K(t)− K̃)Γ−1Γr(t)eT

y (t)]

(36)



Recalling that tr(AB) = tr(BA), xT y = yT x,
and tr(xT y) = xT y and using the WASP relations
gives

V̇ (t) =
eT
x (t)[P (A−BK̃C) + (A−BK̃C)T P ]ex(t)

− eT
x (t)CT WT [K(t)− K̃]r(t)

− rT [K(t)− K̃]T WCex(t)
+ eT

x (t)CT W [K(t)− K̃]r(t)
+ rT (t)[K(t)− K̃]T WCex(t)]

(37)

One of the last two terms in (37), originating
in the derivative of the adaptive gain terms in
V(t), cancels a previous, possibly troubling, non-
positive, term and thus lead to the Lyapunov
derivative

V̇ (t) =
eT
x (t)[P (A−BK̃C) + (A−BK̃C)T P ]ex(t)

+ eT
x (t)CT (W −WT )[K(t)− K̃]r(t)

(38)

At this stage, one can see that the symmetry of
W is obviously needed to finally get

V̇ (t) = −eT
x (t)Qex(t). (39)

The Lyapunov derivative V̇ (t) in (39) is thus
negative definite with respect to ex(t), although
only negative semidefinite with respect to the
entire state-space {ex(t),K(t)}. Although the di-
rect result of Lyapunov stability theory is only
that all dynamic values are bounded, according to
LaSalle’s invariance principle (Kaufman, Barkana
and Sobel, 1998), all state-variables and adaptive
gains are bounded and the system ultimately ends
within the domain defined by V̇ (t) ≡ 0. Because
V̇ (t) is negative definite in ex, the system thus
ends with ex(t) ≡ 0, that in turn implies ey(t) ≡
0. In other words, the adaptive control system
demonstrates asymptotic convergence of the state
and output error and boundedness of the adaptive
gains. Furthermore, it has been recently shown
(Barkana, 2005) that the adaptive control gains
ultimately reach a set of stabilizing constant val-
ues at the end of a steepest descent minimization
of the tracking error. QED.

Finally, it was shown that, while its assumed exis-
tence indeed facilitates the proof of stability and
asymptotically perfect tracking of the adaptive
control system without requiring the symmetry
of CB, the fictitious symmetric matrix W and its
assumed uncertainty play no role in implementa-
tion and have no (negative) effect whatsoever on
the asymptotic tracking properties of the adaptive
control system.

4. COUNTEREXAMPLES TO STANDARD
MODEL REFERENCE ADAPTIVE CONTROL

For an illustration of the stability properties of
Simple Adaptive Control, in this section we use
some ”counterexamples” that lead to divergence
when standard gradient-based MRAC techniques
are applied (Hsu and Costa, 1999). In these exam-
ples, a 2*2 stable plant with CB positive definite
is required to follow the behavior of a stable model
of same order. Both the plant and the model
have diagonal system matrices and same nega-
tive eigenvalues, and only the input-output matrix
differentiates between the two. The plant, a 2D
adaptive robotic visual servoing with uncalibrated
camera, is defined by the system matrices

A =
[−a 0

0 −a

]
B =

[
cosϕ sinϕ
−hsinϕ hcosϕ

]
C =

[
1 0
0 1

]
(40)

The simple model is defined by the matrices

Am =
[−a 0

0 −a

]
Bm =

[
1 0
0 1

]
Cm =

[
1 0
0 1

]
(41)

It is shown (Hsu and Costa, 1999) that the stan-
dard MRAC system becomes unstable with a =

ϕ = 1, h = 0.5, and um =
[

0
3

]
or with a = 9, ϕ =

1, h = 0.5, and um =
[

10sint
10cost

]
. The divergence is

treated in detail in (Hsu and Costa, 1999) and we
only mention it here because instability occurred
in both cases although there was no “unmodeled
dynamics,” there was “sufficient excitation,” and
the required “sufficient” passivity conditions were
also satisfied. It is worth mentioning that this
was a theoretical analysis that resulted in a di-
verging equation. Here, we revisit the examples
and attempt to use the simplicity of SAC, so
we first use the same slow adaptation rate as
(Hsu and Costa, 1999), γ = 1, with all adaptive
gains. However, because the rate of adaptation is
theoretically unlimited with SAC, we will later
show that higher adaptation rates not only do not
affect the stability but they also definitely result
in superior performance.

1) First case: h = 0.5, a = 1, ϕ = 1, um(t) =[
0
3

]
. Note that CB is positive definite, yet not

symmetric. One can see that the SAC system
indeed shows a stable behavior. Because all initial
adaptive gains are zero and the rate of adaptation
is slow, one can see an expected large transient
before all values converge and the tracking error
vanishes.

2) A second case was run with two sinusoidal input

commands: a = 9, um(t) =
[

10sint
10cost

]
. SAC again
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shows stable behavior while the standard MRAC
diverged.

3) Third case: Here, we run the second case after
we eliminate any input command in order to avoid
any impression that the SAC might need input

excitation: a = 9, um(t) =
[

0
0

]
.
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Note that if the plant starts at zero initial con-
ditions, it would remain there. Therefore, we just

gave it some initial conditions
[

1
1.2

]
. With no

input command, while all model states are zero,
Kx and Ku remain zero, while Ke reaches some
stabilizing value. Here, one can see that the SAC
system remains stable with no dependence on the
existence of a model or input command.

4) For an illustration of SAC performance, we
again run the second case, yet the step input
becomes a square wave input. Here we use high
adaptation coefficients γe = 1e4, γx = 1e2, γu =
1e2

As seen below, the plant follows the model so
closely that most of the time, except for an initial
adaptation transient, the model and plant posi-
tions practically coincide.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time  [sec]

Fig. 10. Case 4: Adaptive Gains

Note that all adaptations start with zero initial
gain values. In practice, any initial use with the
specific plant would allow selection of initial gains
that would reduce the transient response even
more (Kaufman, Barkana and Sobel, 1998).

4) In all tests above, the matrix product CB
was Positive Definite and not symmetric, yet
diagonalizable (having distinct eigenvalues). Such
case guarantees the existence of a symmetric W,
as required by the proof of stability. In spite of
that, we here decided to test the stability of the
adaptive system when CB is not Positive Definite
or symmetric. Here we again ran the previous case
with ϕ = 1.25. The input-output matrix product
is now

CB =
[

0.3153 0.9490
−0.4745 0.1577

]
(42)

and one can easily see that CB is not positive
definite or symmetric, yet its eigenvalues, 0.2365
- 0.6664i and 0.2365 - 0.6664i, are located in the
right half plane. As it may happen with nonlinear
control applications, the results of simulation test
under the same conditions as in test 3 above
showed exactly the same performance, although
the sufficient condition is not satisfied.

5. CONCLUSIONS

This paper eliminates an apparent limitation of
Adaptive Model tracking and thus extends the
applicability of the important passivity properties
from minimum-phase systems that have a positive
definite symmetric CB product to the larger class
of systems where the Positive Definite CB is only
diagonalizable and not necessarily symmetric.

The results of this paper are important for the
extension of feasibility of adaptive and nonlinear
control to real-world systems that are not neces-
sarily WSP or WASP and therefore may not sat-
isfy even the new, relaxed, WASP conditions. For
such systems has been shown that if a controller H
stabilizes the system G, then the augmented sys-
tem G+H−1 is minimum-phase (Barkana, 1987).
This way, with proper selection of the relative
degree of H−1, basic stabilizability properties of
systems could be used to implement WASP con-
figurations. However, because the symmetry of

CB of the (basically unknown) augmented sys-
tem cannot be guaranteed, this paper facilitates
the use of parallel feedforward by eliminating a
fundamental limitation of the approach. In var-
ious design environments, one can use available
prior knowledge to either devise a stabilizing con-
troller first (Barkana, 1987), (Kaufman, Barkana
and Sobel, 1998), or directly the ‘parallel feedfor-
ward configuration (PFC)’ or ‘shunt’ (Iwai and
Mizumoto, 1992), (Fradkov, 1994), (Betser and
Zeheb, 1995).
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